FMI, Computer Science, Master Advanced Logic for Computer Science

Exam

First Name:

Last Name: _____

P1	P2	P3	P4	$\mathbf{P5}$	P6	P7	P8	Extra point
/2	/2	/1,5	/1,5	/2	/2	/1	/2	1

TOT	ΓAL
	_/15

1 First-order logic

(P1) [2 points]

(i) Prove that for every first-order language \mathcal{L} and any formulas φ, ψ of \mathcal{L} , we have that

 $\forall x(\varphi \lor \psi) \vDash \exists x\varphi \lor \exists x\psi \text{ for any variable } x.$

(ii) Give an example of a first-order language \mathcal{L} and formulas φ, ψ of \mathcal{L} such that:

 $\forall x \varphi \rightarrow \forall x \psi \not\models \forall x (\varphi \rightarrow \psi)$, where x is a variable.

(P2) [2 points] Let \mathcal{L} be a first-order language that contains

- two unary relation symbols S, T and one binary relation symbols P;
- a unary function symbol g;
- two constant symbols a, d.

(i) Find prenex normal forms for the following formulas of \mathcal{L} :

$$\begin{split} \varphi &:= \neg \exists x P(x, a) \land \forall y \neg S(y), \\ \psi &:= \exists x (S(x) \to \forall y (g(y) = d)) \to \neg (\forall x T(x) \lor \forall y S(y)). \end{split}$$

(ii) Find Skolem normal forms for the following sentences of \mathcal{L} :

$$\begin{split} \chi &:= \exists y \forall x \exists v (S(y) \lor P(x,v) \to (T(v) \to S(y))) \\ \delta &:= \forall x \exists u \forall y \exists v ((S(u) \to P(v,y)) \lor (S(v) \to T(x))) \,. \end{split}$$

(P3) [1,5 points] Let \mathcal{L} be a first-order language and Δ be a set of sentences satisfying

(*) for all $p \in \mathbb{N}$, Δ has a finite model of cardinality $\geq p$.

Prove that the class of finite models of Δ is not axiomatizable.

(P4) [1,5 points] Let \mathcal{L} be a first-order language and \mathcal{K} be a finitely axiomatizable class of \mathcal{L} -structures. Prove the following:

- (i) \mathcal{K} is axiomatized by a single sentence.
- (ii) The class \mathcal{K}^c (of \mathcal{L} -structures that are not members of \mathcal{K}) is finitely axiomatizable.

2 Modal logics

(P5) [2 points] Let $p, q \in PROP$. Verify if the following formulas are valid in the class of all frames for ML_0 :

- (i) $\Diamond p \to \Box p$.
- (ii) $\Box q \land \Diamond p \to \Diamond (p \land q)$.

(P6) [2 points] Prove the following for any formulas φ, ψ of ML_0 :

- (i) $\vdash_{\mathbf{K}} \varphi \to \psi$ implies $\vdash_{\mathbf{K}} \Diamond \Box \varphi \to \Diamond \Box \psi$.
- (ii) $\vdash_{\mathbf{K}} \Diamond \Diamond \varphi \lor \Diamond \Diamond \psi \to \Diamond \Diamond (\varphi \lor \psi).$

(P7) [1 point] Let Λ be a normal logic and $\Gamma \cup \{\varphi, \psi\}$ be a set of formulas of Λ . Prove that

if $\Gamma \vdash_{\Lambda} \varphi$ and ψ is deducible in propositional logic from φ , then $\Gamma \vdash_{\Lambda} \psi$.

(P8) [2 points] Let Λ be a normal logic and Γ be a Λ -MCS. Prove that $\Lambda \subseteq \Gamma$.