FMI, Computer Science, Master Logic for Multiagent Systems

Exam

 $(P1)$ [1.5 points] Let $\mathcal L$ be a first-order language that contains

- two unary relation symbols S, T ;
- a unary function symbol f ;
- a constant symbol c .

Find prenex normal forms for the following formulas of \mathcal{L} :

$$
\varphi := \forall x S(x) \land \neg \exists y S(y),
$$

$$
\psi := \neg \forall y (f(y) = c \to \exists x S(x)) \to (\exists x T(x) \lor \forall y T(y)).
$$

Proof. $\varphi^* = \forall x \forall y (S(x) \land \neg S(y))$ is a prenex normal form for φ . $\psi^* = \forall y \exists x \exists u \forall v (\neg (f(y) = c \rightarrow S(x)) \rightarrow (T(u) \vee T(v)))$ is a prenex normal form φ . \Box

(P2) [2 points] Let $p, q \in PROP$. Verify if the following formulas are valid in the class of all frames for ML_0 :

- (i) $\Box(p \land q) \rightarrow (\Box p \land \Box q);$
- (ii) $\Box p \rightarrow p$.
- *Proof.* (i) The answer is YES. Let $\mathcal{F} = (W, R)$ be an arbitrary frame, w a state in \mathcal{F} and $\mathcal{M} = (\mathcal{F}, V)$ be a model based on \mathcal{F} . Assume that $\mathcal{M}, w \Vdash \Box (p \land q)$. Then for all $v \in W$, Rwv implies $\mathcal{M}, v \Vdash p \wedge q$, hence

(*) for all $v \in W$, Rwv implies $(\mathcal{M}, v \Vdash p$ and $\mathcal{M}, v \Vdash q)$.

Let us show now that $\mathcal{M}, w \Vdash \Box p \land \Box q$.

Let $v \in W$ be such that Rwv. By (*), we get that $\mathcal{M}, v \Vdash p$ and $\mathcal{M}, v \Vdash q$. Thus, $\mathcal{M}, w \Vdash \Box p$ and $\mathcal{M}, w \Vdash \Box q$, so $\mathcal{M}, w \Vdash \Box p \land \Box q$.

(ii) The answer is NO (it is valid in the class of reflexive frames). Let $\mathcal{M}_0 = (W_0, R_0, V_0)$, where

 $W_0 = \{a, b\}, \quad R_0 = \{(a, b)\}, \quad V_0(p) = \{b\}.$

Then $\mathcal{M}_0, a \Vdash \Box p$, since R_0ab and $\mathcal{M}_0, b \Vdash p$. On the other hand, $\mathcal{M}_0, a \Vdash p$.

 \Box

(P3) [1.5 points] Prove the following for any formulas φ, ψ of ML_0 :

- (i) $\vdash_K \Box \varphi \to (\Box \psi \to \Box \varphi);$
- (ii) $\vdash_K \psi \to \varphi$ implies $\vdash_K \Diamond \Box \psi \to \Diamond \Box \varphi$.

Proof. (i) We have that

(1) $\vdash_{\mathbf{K}} \varphi \to (\psi \to \varphi)$ (TAUT) (2) $\vdash_{\mathbf{K}} \Box \varphi \rightarrow \Box (\psi \rightarrow \varphi)$ Example 4.38: (1) (3) $\vdash_K \Box(\psi \to \varphi) \to (\Box \psi \to \Box \varphi)$ (K) (4) $\vdash_K \Box \varphi \rightarrow (\Box \psi \rightarrow \Box \varphi)$ (TAUT): (2), (3)

(ii) We have that

(1) $\vdash_{\mathbf{K}} \psi \to \varphi$ hypothesis (2) $\vdash_{\mathbf{K}} \Box \psi \rightarrow \Box \varphi$ Example 4.38: (1) (3) $\vdash_{\mathbf{K}} \Diamond \Box \psi \rightarrow \Diamond \Box \varphi$ Example 4.39: (2)

(P4) [1.5 points] Consider the model $\mathcal{M} = (W, \mathcal{K}_1, \mathcal{K}_2, V)$ for epistemic logic represented as follows:

Verify if the following are true:

- (i) $\mathcal{M}, t \Vdash K_1 p;$
- (ii) $\mathcal{M}, t \Vdash \neg K_2 \neg K_1 p$.

Proof. (i) Since $t\mathcal{K}_1 t$ and $\mathcal{M}, t \not\models p$, it follows that $\mathcal{M}, t \not\models K_1 p$.

(ii) We have that

 $\mathcal{M}, t \Vdash \neg K_2 \neg K_1 p$ iff $\mathcal{M}, t \not\models K_2 \neg K_1 p$ iff it is not true that for every world w, $t\mathcal{K}_2w$ implies $\mathcal{M}, w \Vdash \neg K_1p$ iff there exists a world w such that $t\mathcal{K}_2w$ and $\mathcal{M}, w \not\,\vdash \neg K_1p$ iff there exists a world w such that $t\mathcal{K}_2w$ and $\mathcal{M}, w \Vdash K_1p$.

Take $w := t$. Then $t\mathcal{K}_1 t$ and we have already proved at (i) that $\mathcal{M}, t \Vdash K_1 p$.

 \Box

 \Box

(P5) [1.5 points] Let \mathcal{M}_c be the model describing the simple card game. Prove the following:

- (i) \mathcal{M}_c , $(A, B) \models 1A \land 2B$;
- (ii) \mathcal{M}_c , $(A, B) \models K_1 \neg K_2 1A$.

Proof. (i) We have that

$$
\mathcal{M}_c, (A, B) \vDash 1A \land 2B \quad \text{iff} \quad \mathcal{M}_c, (A, B) \vDash 1A \text{ and } M_c, (A, B) \vDash 2B
$$

iff
$$
(A, B) \in V(1A) \text{ and } (A, B) \in V(2B),
$$

which is true.

(ii) We have that

$$
\mathcal{M}_c, (A, B) \models K_1 \neg K_2 1A \quad \text{iff} \quad \mathcal{M}_c, (A, B) \models \neg K_2 1A \quad \text{and} \quad \mathcal{M}_c, (A, C) \models \neg K_2 1A \quad \text{iff} \quad \mathcal{M}_c, (A, B) \not\in K_2 1A \quad \text{and} \quad \mathcal{M}_c, (A, C) \not\in K_2 1A.
$$
\nAs $(A, B)\mathcal{K}_2(C, B)$ and $\mathcal{M}_c, (C, B) \not\in 1A$ (as $(C, B) \notin V(1A)$), it follows that\n
$$
\mathcal{M}_c, (A, B) \not\in K_2 1A.
$$
\nAs $(A, C)\mathcal{K}_2(B, C)$ and $\mathcal{M}_c, (B, C) \not\in 1A$ (as $(B, C) \notin V(1A)$), it follows that\n
$$
\mathcal{M}_c, (A, C) \not\in K_2 1A.
$$
\nThus, $\mathcal{M}_c, (A, B) \models K_1 \neg K_2 1A.$

(P6) [1 point] Let M be the model for the muddy children puzzle with $n = 3$. Prove the following:

- (i) $\mathcal{M}, (1, 0, 1) \Vdash K_1 \neg p_2;$
- (ii) $\mathcal{M}, (1, 0, 1) \Vdash K_2p_3$.

Proof. (i) We have that

$$
\mathcal{M}, (1,0,1) \Vdash K_1 \neg p_2 \quad \text{iff} \quad \mathcal{M}, (1,0,1) \Vdash \neg p_2 \text{ and } \mathcal{M}, (0,0,1) \Vdash \neg p_2
$$
\n
$$
\text{iff} \quad \mathcal{M}, (1,0,1) \Vdash p_2 \text{ and } \mathcal{M}, (0,0,1) \Vdash p_2
$$
\n
$$
\text{iff} \quad (1,0,1) \not\in V(p_2) \text{ and } (0,0,1) \not\in V(p_2),
$$

which is true.

(ii) We have that

$$
\mathcal{M}, (1,0,1) \Vdash K_2 p_3 \quad \text{iff} \quad \mathcal{M}, (1,0,1) \Vdash p_3 \text{ and } \mathcal{M}, (1,1,1) \Vdash p_3
$$

iff
$$
(1,0,1) \in V(p_3) \text{ and } (1,1,1) \in V(p_3),
$$

which is true.

 \Box