FMI, Computer Science, Master Logic for Multiagent Systems

Exam

(P1) [1.5 points] Let \mathcal{L} be a first-order language that contains

- two unary relation symbols S, T;
- a unary function symbol f;
- a constant symbol c.

Find prenex normal forms for the following formulas of \mathcal{L} :

$$\begin{split} \varphi &:= & \forall x S(x) \land \neg \exists y S(y), \\ \psi &:= & \neg \forall y \left(f(y) = c \to \exists x S(x) \right) \to \left(\exists x T(x) \lor \forall y T(y) \right) \end{split}$$

Proof. $\varphi^* = \forall x \forall y (S(x) \land \neg S(y))$ is a prenex normal form for φ . $\psi^* = \forall y \exists x \exists u \forall v (\neg (f(y) = c \to S(x)) \to (T(u) \lor T(v)))$ is a prenex normal form φ . \Box

(P2) [2 points] Let $p, q \in PROP$. Verify if the following formulas are valid in the class of all frames for ML_0 :

- (i) $\Box(p \land q) \to (\Box p \land \Box q);$
- (ii) $\Box p \to p$.
- *Proof.* (i) The answer is YES. Let $\mathcal{F} = (W, R)$ be an arbitrary frame, w a state in \mathcal{F} and $\mathcal{M} = (\mathcal{F}, V)$ be a model based on \mathcal{F} . Assume that $\mathcal{M}, w \Vdash \Box(p \land q)$. Then for all $v \in W$, Rwv implies $\mathcal{M}, v \Vdash p \land q$, hence

(*) for all $v \in W$, Rwv implies $(\mathcal{M}, v \Vdash p \text{ and } \mathcal{M}, v \Vdash q)$.

Let us show now that $\mathcal{M}, w \Vdash \Box p \land \Box q$.

Let $v \in W$ be such that Rwv. By (*), we get that $\mathcal{M}, v \Vdash p$ and $\mathcal{M}, v \Vdash q$. Thus, $\mathcal{M}, w \Vdash \Box p$ and $\mathcal{M}, w \Vdash \Box q$, so $\mathcal{M}, w \Vdash \Box p \land \Box q$.

(ii) The answer is NO (it is valid in the class of reflexive frames). Let $\mathcal{M}_0 = (W_0, R_0, V_0)$, where

 $W_0 = \{a, b\}, \quad R_0 = \{(a, b)\}, \quad V_0(p) = \{b\}.$

Then $\mathcal{M}_0, a \Vdash \Box p$, since $R_0 ab$ and $\mathcal{M}_0, b \Vdash p$. On the other hand, $\mathcal{M}_0, a \not\models p$.

(P3) [1.5 points] Prove the following for any formulas φ, ψ of ML_0 :

- (i) $\vdash_{\boldsymbol{K}} \Box \varphi \to (\Box \psi \to \Box \varphi);$
- (ii) $\vdash_{\mathbf{K}} \psi \to \varphi$ implies $\vdash_{\mathbf{K}} \Diamond \Box \psi \to \Diamond \Box \varphi$.

Proof. (i) We have that

 $\begin{array}{ll} (1) & \vdash_{\boldsymbol{K}} \varphi \to (\psi \to \varphi) & (\text{TAUT}) \\ (2) & \vdash_{\boldsymbol{K}} \Box \varphi \to \Box (\psi \to \varphi) & \text{Example 4.38: (1)} \\ (3) & \vdash_{\boldsymbol{K}} \Box (\psi \to \varphi) \to (\Box \psi \to \Box \varphi) & (\text{K}) \\ (4) & \vdash_{\boldsymbol{K}} \Box \varphi \to (\Box \psi \to \Box \varphi) & (\text{TAUT}): (2), (3) \end{array}$

(ii) We have that

 $\begin{array}{ll} (1) & \vdash_{\boldsymbol{K}} \psi \to \varphi & \text{hypothesis} \\ (2) & \vdash_{\boldsymbol{K}} \Box \psi \to \Box \varphi & \text{Example 4.38: (1)} \\ (3) & \vdash_{\boldsymbol{K}} \Diamond \Box \psi \to \Diamond \Box \varphi & \text{Example 4.39: (2)} \end{array}$

(P4) [1.5 points] Consider the model $\mathcal{M} = (W, \mathcal{K}_1, \mathcal{K}_2, V)$ for epistemic logic represented as follows:

Verify if the following are true:

- (i) $\mathcal{M}, t \Vdash K_1 p$;
- (ii) $\mathcal{M}, t \Vdash \neg K_2 \neg K_1 p$.

Proof. (i) Since $t\mathcal{K}_1 t$ and $\mathcal{M}, t \not\models p$, it follows that $\mathcal{M}, t \not\models K_1 p$.

(ii) We have that

 $\mathcal{M}, t \Vdash \neg K_2 \neg K_1 p \quad \text{iff} \quad \mathcal{M}, t \not\models K_2 \neg K_1 p \\ \text{iff} \quad \text{it is not true that for every world } w, t \mathcal{K}_2 w \text{ implies } \mathcal{M}, w \Vdash \neg K_1 p \\ \text{iff} \quad \text{there exists a world } w \text{ such that } t \mathcal{K}_2 w \text{ and } \mathcal{M}, w \not\models \neg K_1 p \\ \text{iff} \quad \text{there exists a world } w \text{ such that } t \mathcal{K}_2 w \text{ and } \mathcal{M}, w \Vdash K_1 p.$

Take w := t. Then $t\mathcal{K}_1 t$ and we have already proved at (i) that $\mathcal{M}, t \Vdash K_1 p$.

(P5) [1.5 points] Let \mathcal{M}_c be the model describing the simple card game. Prove the following:

- (i) $\mathcal{M}_c, (A, B) \models 1A \land 2B;$
- (ii) $\mathcal{M}_c, (A, B) \vDash K_1 \neg K_2 1 A.$

Proof. (i) We have that

$$\mathcal{M}_{c}, (A, B) \vDash 1A \land 2B \quad \text{iff} \quad \mathcal{M}_{c}, (A, B) \vDash 1A \text{ and } M_{c}, (A, B) \vDash 2B \\ \text{iff} \quad (A, B) \in V(1A) \text{ and } (A, B) \in V(2B),$$

which is true.

(ii) We have that

$$\mathcal{M}_{c}, (A, B) \vDash K_{1} \neg K_{2} 1A \quad \text{iff} \quad \mathcal{M}_{c}, (A, B) \vDash \neg K_{2} 1A \text{ and } \mathcal{M}_{c}, (A, C) \vDash \neg K_{2} 1A \\ \text{iff} \quad \mathcal{M}_{c}, (A, B) \nvDash K_{2} 1A \text{ and } \mathcal{M}_{c}, (A, C) \nvDash K_{2} 1A.$$
As $(A, B)\mathcal{K}_{2}(C, B)$ and $\mathcal{M}_{c}, (C, B) \nvDash 1A$ (as $(C, B) \notin V(1A)$), it follows that $\mathcal{M}_{c}, (A, B) \nvDash K_{2} 1A.$
As $(A, C)\mathcal{K}_{2}(B, C)$ and $\mathcal{M}_{c}, (B, C) \nvDash 1A$ (as $(B, C) \notin V(1A)$), it follows that $\mathcal{M}_{c}, (A, C) \nvDash K_{2} 1A.$
Thus, $\mathcal{M}_{c}, (A, B) \vDash K_{1} \neg K_{2} 1A.$

(P6) [1 point] Let \mathcal{M} be the model for the muddy children puzzle with n = 3. Prove the following:

- (i) $\mathcal{M}, (1, 0, 1) \Vdash K_1 \neg p_2;$
- (ii) $\mathcal{M}, (1,0,1) \Vdash K_2 p_3.$

Proof. (i) We have that

$$\mathcal{M}, (1,0,1) \Vdash K_1 \neg p_2 \quad \text{iff} \quad \mathcal{M}, (1,0,1) \Vdash \neg p_2 \text{ and } \mathcal{M}, (0,0,1) \Vdash \neg p_2 \\ \text{iff} \quad \mathcal{M}, (1,0,1) \nvDash p_2 \text{ and } \mathcal{M}, (0,0,1) \nvDash p_2 \\ \text{iff} \quad (1,0,1) \notin V(p_2) \text{ and } (0,0,1) \notin V(p_2), \end{cases}$$

which is true.

(ii) We have that

$$\mathcal{M}, (1,0,1) \Vdash K_2 p_3$$
 iff $\mathcal{M}, (1,0,1) \Vdash p_3$ and $\mathcal{M}, (1,1,1) \Vdash p_3$
iff $(1,0,1) \in V(p_3)$ and $(1,1,1) \in V(p_3)$,

which is true.