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Abstract

In this paper we define Baer BL-algebras as BL-algebras with the
property that co-annihilator filters are generated by central elements. We
use sheaf-theoretic techniques to construct a Baer extension of any BL-
algebra, that is to embed any nontrivial BL-algebra A into a Baer BL-
algebra A∗. The embedding turns to be an isomorphism if A is itself a
Baer BL-algebra.
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Introduction

In 1998, Hájek [14] introduced a very general many-valued logic, called Basic
Logic (or BL), with the idea to formalize the many-valued semantics induced
by a continuous t-norm on the unit real interval [0, 1]. This Basic Logic turns
to be a fragment common to three important many-valued logics: ℵ0-valued
 Lukasiewicz logic, Gödel logic and Product logic. The Lindenbaum-Tarski al-
gebras for Basic Logic are called BL-algebras. Apart from their logical interest,
BL-algebras have important algebraic properties and they have been intensively
studied from an algebraic point of view.

The aim of this paper is to construct a Baer extension of any BL-algebra,
that is to embed any nontrivial BL-algebra A into a Baer BL-algebra. Baer
BL-algebras are BL-algebras with the property that co-annihilator filters are
generated by central elements. The definition is similar to the one of Baer
rings, extensively studied (see [15, 17, 18, 7, 21, 22, 23] or, for some recent
papers, [3, 4, 5]), or Baer MV-algebras, defined in [12] (also studied under the
name of strongly stonian MV-algebras in [1]).
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In order to construct the Baer extension of a BL-algebra, we use sheaf-
theoretic techniques inspired by Keimel’s construction for rings and semigroups
[16], which is similar to the methods used by Kist in [17]. Thus, for any BL-
algebra A we construct a Hausdorff BL-sheaf space having as a base space the
complete Boolean algebra Co−An(A) of co-annihilator filters of A, and it turns
out that the BL-algebra of global sections, which we will denote by A∗, is a
Baer extension of A. Moreover, if A is a Baer BL-algebra, then A ∼= A∗.

1 BL-algebras. Definitions and first properties

A BL-algebra [14] is an algebra (A,∧,∨,�,→, 0, 1) with four binary operations
∧,∨,�,→ and two constants 0, 1 such that (A,∧,∨, 0, 1) is a bounded lattice,
(A,�, 1) is a commutative monoid, and for all a, b, c ∈ A,

c ≤ a → b iff a� c ≤ b (1.1)
a ∧ b = a� (a → b) (1.2)

(a → b) ∨ (b → a) = 1. (1.3)

In order to simplify the notation, a BL-algebra (A,∧,∨,�,→, 0, 1) will be re-
ferred by its support set A.

A BL-algebra A is nontrivial iff 0 6= 1. For any BL-algebra A, the reduct
L(A) = (A,∧,∨, 0, 1) is a bounded distributive lattice. A BL-chain is a totally
ordered BL-algebra, i.e. a BL-algebra such that its lattice order is total.

For any a ∈ A, we define a− = a → 0. We denote the set of natural numbers
by ω. We define a0 = 1 and an = an−1 � a for n ∈ ω − {0}.

The following properties hold in any BL-algebra A and will be used in the
sequel:

a� b ≤ a ∧ b ≤ a, b (1.4)
a → b = 1 iff a ≤ b (1.5)

(a ∨ b)� (a ∨ c) ≤ a ∨ (b� c) (1.6)
a� a− = 0 (1.7)

(1.8)

Let A be a BL-algebra. A filter of A is a nonempty set F ⊆ A such that for
all a, b ∈ A,
(i) a, b ∈ F implies a� b ∈ F ;
(ii) a ∈ F and a ≤ b imply b ∈ F .
Trivial examples of filters are {1} and A. A filter F of A is proper iff F 6= A.
Any filter of A is also a filter of the lattice L(A).

A proper filter P of A is called prime provided that it is prime as a filter of
L(A), that is

a ∨ b ∈ P implies a ∈ P or b ∈ P.
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In the sequel, we shall denote by F(A) the set of filters of A, and by Spec(A)
the set of prime filters of A.

If X ⊆ A, then the filter of A generated by X will be denoted by < X >.
We have that < ∅ >= {1} and, if X 6= ∅,

< X > = {y ∈ A | x1 � . . .� xn ≤ y

for some n ∈ ω − {0} and some x1, . . . , xn ∈ X}.

For any a ∈ A, < a > denotes the principal filter of A generated by {a}.
Then,

< a >= {b ∈ A | an ≤ b for some n ∈ ω − {0}}.
It follows immediately that < 1 >= {1} and < 0 >= A.

Proposition 1.1. (F(A),⊆) is a complete lattice. For every family {Fi}i∈I of
filters of A, we have that ∧

i∈I

Fi =
⋂
i∈I

Fi,∨
i∈I

Fi = <
⋃
i∈I

Fi > .

It is easy to see that if F,G are filters of A, then

F ∨G = < F ∪G > = {a ∈ A | b� c ≤ a for some b ∈ F, c ∈ G}. (1.9)

Proposition 1.2. (i) a ≤ b implies < b >⊆< a >;
(ii) < a ∨ b >=< a > ∩ < b >;
(iii) < a > ∨ < b >=< a ∧ b >=< a� b >;
(iv) if F is a filter of A, then a ∈ F iff < a >⊆ F ;
(v) < a >= {1} iff a = 1.

Proof. (i) Let c ∈< b >. Then there is n ∈ ω − {0} such that c ≥ bn ≥ an,
hence c ∈< a >.
(ii) By [9, Lemma 4.11].
(iii) Applying (i), we obtain that < a > ∨ < b >⊆< a ∧ b >⊆< a � b >, since
a � b ≤ a ∧ b ≤ a, b. It remains to prove that < a � b >⊆< a > ∨ < b >. Let
x ∈< a � b >; that is there is n ∈ ω − {0} such that an � bn = (a � b)n ≤ x.
Applying now the fact that an ∈< a >, bn ∈< b >, and (1.9), it follows that
x ∈< a > ∨ < b >.
(iv),(v) Obviously.

With any filter F of A we can associate a congruence relation ≡ (mod F ) on A
by defining

a ≡ b(mod F ) iff a → b ∈ F and b → a ∈ F iff (a → b)� (b → a) ∈ F.

For any a ∈ A, let a/F be the equivalence class a/≡(mod F ). If we denote by
A/F the quotient set A/≡(mod F ), then A/F becomes a BL-algebra with the
natural operations induced from those of A.

3



Let B(A) be the Boolean algebra of all complemented elements in the dis-
tributive lattice L(A). We shall refer to B(A) as the center of A and to elements
of B(A) ascentral elements of A.

Proposition 1.3. [10, Proposition 1.9]
Let e ∈ A. The following are equivalent:
(i) e ∈ B(A);
(ii) e� e = e and e = e−−;
(iii) e� e = e and e− → e = e;
(iv) e ∨ e− = 1.

Proposition 1.4. Suppose that a, b ∈ A and e, f ∈ B(A). Then
(i) < e >= {a ∈ A | e ≤ a};
(ii) < e >= e ∨A = {e ∨ a | a ∈ A};
(iii) e = f iff < e >=< f >;
(iv) e� a = e ∧ a;
(v) e ∧ e− = 0;
(vi) a ∨ e− = 1 iff e ≤ a iff a ∈< e >.

Proof. (i) Apply Proposition 1.3(ii).
(ii) ”⊆” If a ∈< e >, then e ≤ a, so a = e ∨ a, that is a ∈ e ∨A.
”⊇” Apply (i).
(iii) If < e >=< f >, then, by (i) e ∈< f >, so e ≥ f , and f ∈< e >, so e ≤ f .
(iv) By [10, Lemma 1.11].
(v) Apply (iv) and (1.7).
(vi) If e ≤ a, then e∧a = e, hence 1 = e−∨e = e−∨(e∧a) = (e−∨e)∧(e−∨a) =
1∧ (e− ∨ a) = e− ∨ a. Conversely, if a∨ e− = 1, then e = e∧ 1 = e∧ (a∨ e−) =
(e ∧ a) ∨ (e ∧ e−) = (e ∧ a) ∨ 0 = e ∧ a, so e ≤ a.

A BL-algebra A is called directly indecomposable iff A is nontrivial and whenever
A ∼= A1 ×A2 then either A1 or A2 is trivial.

Proposition 1.5. [10, Proposition 1.12]
A BL-algebra A is directly indecomposable iff B(A) = {0, 1}.

Proposition 1.6. [10, Proposition 1.13]
Any BL-chain is directly indecomposable.

2 Co-annihilators

Let F be a filter of A and a ∈ A. The co-annihilator of a relative to F is the
set

(F, a) = {x ∈ A | a ∨ x ∈ F}.

Proposition 2.1. Let F,G be filters of A and a, b ∈ A. Then
(i) (F, a) is a filter of A;
(ii) F ⊆ (F, a);
(iii) a ≤ b implies (F, a) ⊆ (F, b);
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(iv) F ⊆ G implies (F, a) ⊆ (G, a);
(v) (F, a) = A iff a ∈ F ;
(vi) (F, a) ∩ (F, b) = (F, a ∧ b) = (F, a� b);
(vii) (F, a) ∩ (G, a) = (F ∩G, a) and (F, a) ∪ (G, a) = (F ∪G, a);
(viii) ((F, a), b) = ((F, b), a) = (F, a ∨ b).

Proof. (i) We have that a∨1 = 1 ∈ F , hence 1 ∈ (F, a). If x ≤ y and x ∈ (F, a),
then x∨a ∈ F and x∨a ≤ y∨a. Hence, y∨a ∈ F , i.e. y ∈ (F, a). Assume that
x, y ∈ (F, a), i.e. x∨a, y∨a ∈ F . Since, by (1.6), (x�y)∨a≥(x∨a)�(y∨a) ∈ F ,
it follows that (x� y) ∨ a ∈ F , so x� y ∈ (F, a).
(ii) Let x ∈ F . Then x ∨ a ≥ x ∈ F , hence x ∨ a ∈ F . That is, x ∈ (F, a).
(iii) Let x ∈ (F, a). Then x∨ a ≤ x∨ b and x∨ a ∈ F . It follows that x∨ b ∈ F ,
i.e x ∈ (F, b).
(iv) Let x ∈ (F, a). Then x ∨ a ∈ F ⊆ G. Hence, x ∈ (G, a).
(v) If (F, a) = A, then 0 ∈ (F, a), hence a = 0 ∨ a ∈ F . If a ∈ F , then for
any x ∈ A, a ≤ x ∨ a, hence x ∨ a ∈ F . That is, for any x ∈ A, we have that
x ∈ (F, a).
(vi) Since a � b ≤ a ∧ b ≤ a, b, by (iii), it follows that (F, a � b) ⊆ (F, a ∧ b) ⊆
(F, a)∩ (F, b). Conversely, let x ∈ (F, a)∩ (F, b), hence x∨a ∈ F and x∨ b ∈ F .
By (1.6), we get that x∨ (a� b) ≥ (x∨ a)� (x∨ b) ∈ F . That is, x ∈ (F, a� b).
(vii) Obviously, using (iii).
(viii) We have that x ∈ ((F, a), b) iff x ∨ b ∈ (F, a) iff (x ∨ b) ∨ a ∈ F iff
x∨(a∨b) ∈ F iff x ∈ (F, a∨b), and, similarly, x ∈ ((F, b), a) iff x ∈ (F, a∨b).

For any a, b ∈ A, we shall denote by (b, a) the co-annihilator (< b >, a).

Proposition 2.2. Let a, b ∈ A. Then
(i) (a, a) = A;
(ii) (b, a) = (b, a ∧ b) = (b, a� b);
(iii) (b, a) = (a ∨ b, a).

Proof. (i) Apply Proposition 2.1(v).
(ii) By Proposition 2.1(vi), we get that (b, a ∧ b) = (b, a � b) = (b, a) ∩ (b, b) =
(b, a) ∩A = (b, a).
(iii) Applying Proposition 1.2(ii) and Proposition 2.1(vii), it follows that (a ∨
b, a) = (< a ∨ b >, a) = (< a > ∩ < b >, a) = (a, a) ∩ (b, a) = (b, a).

For any non-empty subset X of A, the co-annihilator of X is the set

⊥X = {a ∈ A | a ∨ x = 1 for any x ∈ X}.

It is easy to see that ⊥A = {1} and ⊥∅ = ⊥{1} = A.

Proposition 2.3. Let ∅ 6= X, Y ⊆ A, (Xi)i∈I ⊆ A and F be a filter of A.
Then,
(i) ⊥X is a filter of A;
(ii) If X ⊆ Y , then ⊥Y ⊆ ⊥X and ⊥⊥X ⊆ ⊥⊥Y ;
(iii) X ⊆ ⊥⊥X;
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(iv) ⊥X = ⊥⊥⊥X;
(v) ⊥X = ⊥ < X >;
(vi) < X > ∩⊥X = {1};
(vii) F ∩ ⊥F = {1};
(viii) ⊥F is a prime filter iff F is a chain and F 6= {1};
(ix)

⋂
i∈I

⊥Xi = ⊥(
⋃

i∈I Xi).

Proof. (i)-(viii) By [9, Proposition 4.38, 4.39, 4.40, 4.42].
(ix) Let a ∈ A. Then a ∈

⋂
i∈I

⊥Xi iff a ∈ ⊥Xi for all i ∈ I iff a ∨ x = 1 for all
x ∈ Xi, i ∈ I iff a ∨ x = 1 for all x ∈

⋃
i∈I Xi iff a ∈ ⊥(

⋃
i∈I Xi).

Let us recall some facts from lattice theory (see [13]). Let (L,∨,∧, 0) be a lattice
with 0. An element a∗ ∈ L is a pseudocomplement of a ∈ L if

a ∧ a∗ = 0 and a ∧ x = 0 imply x ≤ a∗.

A bounded lattice L is called pseudocomplemented iff every element has a pseu-
docomplement.

Proposition 2.4. The lattice F(A) is pseudocomplemented. For any filter F ,
its pseudocomplement is ⊥F .

Proof. By Proposition 2.3(vii), F ∧F(A)
⊥F = F ∩ ⊥F = {1}. Let G be a filter

of A such that F ∧F(A) G = F ∩ G = {1}. We shall prove that G ⊆ ⊥F . Let
a ∈ G. For any x ∈ F , we have that a ∨ x ∈ F ∩G = {1}, since a ∨ x ≥ x ∈ F
and a ∨ x ≥ a ∈ G. Hence, a ∨ x = 1 for any x ∈ F , so a ∈ ⊥F . That is, ⊥F is
the pseudocomplement of F .

We define
Co−An(A) = {⊥F | F ∈ F(A)}.

The elements of Co−An(A) will be called co-annihilator filters of A .

Remark 2.5. Co−An(A) = {⊥X | X ⊆ A}

Proof. Apply Proposition 2.3(v).

Proposition 2.6. Let F,G be filters of A.
(i) F ∈ Co−An(A) iff ⊥⊥F = F ;
(ii) if F,G ∈ Co−An(A), then F ∩G ∈ Co−An(A);
(iii) {1}, A ∈ Co−An(A);
(iv) for F,G ∈ Co−An(A), define F ∨Co−An(A) G = ⊥(⊥F ∩ ⊥G). Then

(Co−An(A),∩,∨Co−An(A),
⊥, {1}, A)

is a Boolean algebra.
(v) Co−An(A) is a complete Boolean algebra;
(vi) for any family (Fi)i∈I ⊆ Co−An(A),

⊥⊥(
⋂
i∈I

Fi) =
⋂
i∈I

⊥⊥Fi;

(vii) if F,G ∈ Co−An(A), then F ∨G ⊆ F ∨Co−An(A) G.
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Proof. (i)-(iv) By well-known results from lattice theory (see, e.g., [13]).
(v) Let (Fi)i∈I ⊆ Co − An(A). Hence, for all i ∈ I, there is Xi ⊆ A such that
Fi = ⊥Xi. Applying Proposition 2.3(ix), it follows that

⋂
i∈I Fi =

⋂
i∈I

⊥Xi =
⊥(

⋃
i∈I Xi) ∈ Co−An(A). Thus, Co−An(A) is closed to arbitrary intersections,

so it is a complete Boolean algebra.
(vi) Applying (vi) and (i), we get that ⊥⊥(

⋂
i∈I Fi) =

⋂
i∈I Fi =

⋂
i∈I

⊥⊥Fi.
(vii) Obviously, since F,G ⊆ F ∨Co−An(A) G.

Remark 2.7. If A is a BL-chain, then the only co-annihilator filters are A and
{1}, so Co−An(A) is isomorphic with L2, the two-elements Boolean algebra.

We shall denote by
⊥a = ⊥{a}.

It is easy to see that ⊥1 = A, ⊥0 = {1}, ⊥⊥0 = A, and ⊥⊥1 = {1}.

Remark 2.8. For any X ⊆ A, ⊥X =
⋂

x∈X
⊥x.

Proposition 2.9. Let a, b ∈ A and e ∈ B(A). Then
(i) ⊥a = (1, a) = {x ∈ A | x ∨ a = 1};
(ii) a ≤ b implies ⊥a ⊆ ⊥b;
(iii) ⊥a = A iff a = 1;
(iv) ⊥a ∩ ⊥b = ⊥(a ∧ b) = ⊥(a� b);
(v) ⊥e =< e− >.

Proof. (i) (1, a) = (< 1 >, a) = ({1}, a) = {x ∈ A | x ∨ a = 1} = ⊥a.
(ii) a ≤ b implies < b >⊆< a >. Hence, applying Proposition 2.3(v), (ii), we
get that ⊥a = ⊥ < a >⊆ ⊥ < b >= ⊥b.
(iii) ⊥a = A iff 0 ∈ ⊥a iff 0 ∨ a = 1 iff a = 1.
(iv) We have that x ∈ ⊥a ∩ ⊥b iff x ∨ a = x ∨ b = 1 iff (x ∨ a) ∧ (x ∨ b) = 1 iff
x ∨ (a ∧ b) = 1 iff x ∈ ⊥(a ∧ b). Hence, ⊥a ∩ ⊥b = ⊥(a ∧ b). Since a� b ≤ a ∧ b,
by (ii), it follows that ⊥(a � b) ⊆ ⊥(a ∧ b). Conversely, if x ∨ (a ∧ b) = 1, then
x∨a = x∨b = 1, so (x∨a)�(x∨b) = 1. By (1.6), it follows that x∨(a�b) = 1,
that is x ∈ ⊥(a� b).
(v) We have that a ∈ ⊥e iff a ∨ e = 1 iff a ∨ e−− = 1 iff a ∈< e− >, by
Proposition 1.4(vi).

Proposition 2.10. Let a, b ∈ A. Then
(i) ⊥⊥a = {x ∈ A | x ∨ y = 1 for any y ∈ A such that y ∨ a = 1};
(ii) a ∈ ⊥⊥a;
(iii) a ≤ b implies ⊥⊥b ⊆ ⊥⊥a;
(iv) b ∈ ⊥a implies ⊥⊥a ⊆ ⊥b;
(v) ⊥⊥a ∩ ⊥⊥b = ⊥⊥(a ∨ b).

Proof. (i) By the definition.
(ii) It is an immediate consequence of (i).
(iii) Apply Proposition 2.9(ii) and Proposition 2.3(ii).
(iv) By Proposition 2.3(ii).
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(v) By Proposition 2.3(v), Proposition 1.2(iii), and Proposition 2.6(vi), it follows
that ⊥⊥(a ∨ b) = ⊥⊥ < a ∨ b >= ⊥⊥(< a > ∩ < b >) = ⊥⊥ < a > ∩⊥⊥ < b >=
⊥⊥a ∩ ⊥⊥b.

Proposition 2.11. Let a, b ∈ A. Then
(i) ⊥a ∨Co−An(A)

⊥b = ⊥(a ∨ b);
(ii) ⊥a ∨ ⊥b ⊆ ⊥(a ∨ b).

Proof. (i) Applying Proposition 2.6(v), Proposition 2.10(v), and Proposition
2.3(iv), we get that ⊥a∨Co−An(A)

⊥b = ⊥(⊥⊥a∩⊥⊥b) = ⊥⊥⊥(a∨ b) = ⊥(a∨ b).
(ii) Apply Proposition 2.6(vii) and (i).

We shall call a co-annihilator filter of the form ⊥a, a ∈ A, a co-annulet and
denote with Co−An0(A) the set of co-annulets of A.

Proposition 2.12. Co−An0(A) is a bounded sublattice of the Boolean algebra
Co−An(A).

Proof. Apply Proposition 2.9(iv) and Proposition 2.11(i) to get that Co −
An0(A) is a sublattice of Co − An(A). Finally, A = ⊥1 ∈ Co − An0(A), and
{1} = ⊥0 ∈ Co−An0(A).

3 Sheaf spaces and sheaf representations of BL-
algebras

The notion of a BL-sheaf space (or sheaf space of BL-algebras) is defined fol-
lowing the general line of sheaf spaces of universal algebras [8]. The following
properties are presented in detail in [19, 11], but for the sake of completeness
we recall them here.

A sheaf space of BL-algebras (or a BL-sheaf space) is a triple (F, p, X) such
that the following properties are satisfied:
(i) F and X are topological spaces;
(ii) p : F → X is a local homeomorphism from F onto X;
(iii) for each x ∈ X, p−1({x}) = Fx is a nontrivial BL-algebra with operations
denoted by ∨x,∧x,�x,→x, 0x, 1x;
(iv) the functions (a, b) 7→ a∨x b, (a, b) 7→ a∧x b, (a, b) 7→ a�x b, (a, b) 7→ a →x b
from the set {(a, b) ∈ F × F | p(a) = p(b)} into F are continuous, where
x = p(a) = p(b);
(v) the functions 0, 1 : X → F , which assign to each x in X the zero 0x and the
unit 1x of Fx respectively, are continuous.
X is known as the base space, F as the total space and Fx is called the stalk of
F at x ∈ X.

If Y ⊆ X, then a section σ over Y is a continuous map σ : Y → F satisfying
(p ◦σ)(y) = y for all y ∈ Y . The set of all sections over Y form a nontrivial BL-
algebra with the operations defined pointwise, that will be denoted by Γ(Y, F ).
The elements of Γ(X, F ) are called global sections.

8



For every σ, τ ∈ Γ(Y, F ), we shall use the following notation:

[σ = τ ] = {y ∈ Y | σ(y) = τ(y)}.

Proposition 3.1. Let (F, p, X) be a BL-sheaf space.
(i) for any Y ⊆ X and σ, τ ∈ Γ(Y, F ), the subset [σ = τ ] is open in Y ;
(ii) the family {σ(U) | U is open in X, σ ∈ Γ(U,F )} is a basis for the topology
of F ;
(iii) if F is Hausdorff then [σ = τ ] is clopen in X for all σ, τ ∈ Γ(X, F ).

Following Mulvey [20], by a sheaf representation (or simply representation)
of a nontrivial BL-algebra A will be meant a BL-morphism

ϕ : A → Γ(X, F )

from A to the BL-algebra Γ(X, F ) of global sections of a BL-sheaf space (F, p, X).
For each x ∈ X, we define

ϕx : A → Fx, ϕx(a) = ϕ(a)(x) for all a ∈ A,

Kx = Ker(ϕx) = {a ∈ A | ϕ(a)(x) = 1x}.

It is easy to see that ϕx is a BL-morphism, so Kx is a proper filter of A for
every x ∈ X. Moreover, Ker(ϕ) =

⋂
x∈X Kx, hence ϕ is a monomorphism iff⋂

x∈X Kx = {1}.
A filter space of a BL-algebra A is a family {Tx}x∈X of proper filters of A,

indexed by a topological space X. We say that a filter space {Tx}x∈X canonically
determines a representation of A if there is a representation ϕ : A → Γ(X, F )
such that Tx = Kx for all x ∈ X.

Theorem 3.2. [11, Theorem 2]
Let A be a nontrivial BL-algebra and {Tx}x∈X a filter space of A such that the
subset V (a) = {x ∈ X | a ∈ Tx} is open in X for all a ∈ A. Then {Tx}x∈X

canonically determines a representation of A.

The BL-sheaf space (FA, pA, X) and the representation ϕ : A → Γ(X, FA) are
constructed in the following way, given in [8] for universal algebra. Let FA

be the disjoint union of the sets {A/Tx}x∈X and pA : FA → X the canonical
projection, so p−1

A ({x}) = A/Tx for all x ∈ X. For all x ∈ X, Tx is a proper
filter of A, so A/Tx is a nontrivial BL-algebra. For each a ∈ A, define the
map [a] : X → FA by [a](x) = a/Tx. Endow FA with the topology generated
by the family {[a](U) | a ∈ A and U is open in X}. Applying [8, Corollary
2], we get that (FA, pA, X) is a sheaf space of BL-algebras and the function
ϕ : A → Γ(X, FA), defined by ϕ(a) = [a] for all a ∈ A, is a representation of A.
It is easy to see that Kx = Tx for all x ∈ X.

4 Baer extensions of BL-algebras

A BL-algebra A is called Baer if every co-annihilator filter of A is a principal
filter of A generated by an element from the center B(A).
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Remark 4.1. Let A be a BL-algebra. The following are equivalent:
(i) A is Baer;
(ii) for all F ∈ Co−An(A), there is e ∈ B(A) such that F =< e >= e ∨A;
(iii) for all F ∈ Co−An(A), there is a unique e ∈ B(A) such that F =< e >=
e ∨A;
(iv) for all X ∈ A, there is a unique e ∈ B(A) such that ⊥X =< e >= e ∨A.

Proof. (i) ⇔ (ii) By the definition and Proposition 1.4(ii).
(ii) ⇔ (iii) Apply Proposition 1.4(iii).
(iii) ⇔ (iv) By Remark 2.5.

Let A be a BL-algebra. A Baer BL-algebra A∗ is called a Baer extension of A
if A is isomorphic to a BL-subalgebra of A∗.

By Proposition 2.6(v), Co − An(A) is a complete Boolean algebra. Let
Spec(Co− An(A)) be the set of its prime filters. Then Spec(Co− An(A)) is a
Boolean space and the clopen sets of the basis are all the sets of the form

NH = {m ∈ Spec(Co−An(A)) | H ∈ m},

where H ∈ Co−An(A).
Let us recall that a topological space X is called extremally disconnected if

the closure U of any open subset U of X is also an open subset of X. Since
Co − An(A) is a complete Boolean algebra, it follows that Spec(Co − An(A))
is extremally disconnected (see, e.g., [2, Proposition 10.3.6, p.209]).

For any m ∈ Spec(Co−An(A)), we define

Pm = ∪{H ∈ Co−An(A) | H ∈/ m} = ∪{H ∈ Co−An(A) | m ∈/ NH}.

Proposition 4.2. Let m ∈ Spec(Co−An(A)) and a ∈ A. Then
(i) a ∈ Pm iff ⊥⊥a ∈/ m;
(ii) Pm is a prime filter of A.

Proof. (i) Suppose that a ∈ Pm. Then there is H ∈ Co−An(A) such that a ∈ H
and H ∈/ m. By Proposition 2.3(ii), from {a} ⊆ H we get that ⊥⊥a ⊆ ⊥⊥H = H.
If ⊥⊥a ∈ m, since ⊥⊥a,H ∈ Co − An(A), and m is a filter of Co − An(A) we
get that H ∈ m, that is a contradiction. Hence, ⊥⊥a ∈/ m. Conversely, suppose
that ⊥⊥a ∈/ m. If we take H = ⊥⊥a, then H ∈ Co−An(A), H ∈/ m, and a ∈ H,
by Proposition 2.10(ii). Hence, a ∈ Pm.
(ii) Since m is a proper filter of Co − An(A), we have that {1} ∈/ m. Hence,
⊥⊥1 = {1} ∈/ m. By (i), we get that 1 ∈ Pm. Let a, b ∈ Pm. Hence, there
are H1,H2 ∈ Co − An(A) such that H1,H2 ∈/ m, a ∈ H1, b ∈ H2. Let H =
H1 ∨Co−An(A) H2. Then, H ∈ Co − An(A), a, b ∈ H and H ∈/ m, since m is
prime in Co−An(A). From a, b ∈ H and the fact that H is a filter of A, we get
that a�b ∈ H. Hence, H ∈ Co−An(A) is such that a�b ∈ H and H ∈/ m, that
is, a� b ∈ Pm. Suppose now that a, b are in A such that a ≤ b and a ∈ Pm. By
(i) we have that ⊥⊥a ∈/ m. From a ≤ b and Proposition 2.10(iii) it follows that
⊥⊥b ⊆ ⊥⊥a. Since m is a filter of Co − An(A), we get that ⊥⊥b ∈/ m. Hence,
applying again (i), b ∈ Pm. Thus, we have got that Pm is a filter of A. We have
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that ⊥⊥0 = A ∈ m, since m is a filter of Co − An(A). Hence, by (i), 0 ∈/ Pm.
That is, Pm is proper. Let us prove that Pm is a prime filter of A. Let a, b ∈ A
such that a ∨ b ∈ Pm, so, by (i), ⊥⊥(a ∨ b) ∈/ m. By Proposition 2.10(v), we get
that ⊥⊥a∩⊥⊥b ∈/ m. Since m is a filter of Co−An(A), it follows that ⊥⊥a ∈/ m
or ⊥⊥b ∈/ m. Hence, again by (i), a ∈ Pm or b ∈ Pm.

Proposition 4.3. ⋂
{Pm | m ∈ Spec(Co−An(A))} = {1}.

Proof. Let a 6= 1 in A. Then ⊥a 6= A, by Proposition 2.9(iii). Since A is the
greatest element of the Boolean algebra Co−An(A), there is a prime filter n of
Co−An(A) such that ⊥a ∈/ n. Since ⊥a ∨Co−An(A)

⊥⊥a = A and n is prime, it
follows that ⊥⊥a ∈ n, hence, by Proposition 4.2(i), a ∈/ Pn.

Corollary 4.4. A is isomorphic to a subdirect product of the family
{A/Pm}m∈Spec(Co−An(A)).

Proof. Apply the above proposition and [6, Lemma II.8.2, p. 56].

Proposition 4.5. For any a, b ∈ A, the set {m ∈ Spec(Co−An(A)) | a/Pm =
b/Pm} is clopen in Spec(Co−An(A)).

Proof. Let U = {m ∈ Spec(Co−An(A)) | a/Pm = b/Pm}. We have that m ∈ U
iff (a → b)� (b → a) ∈ Pm iff ⊥⊥((a → b)� (b → a)) ∈/ m iff ⊥((a → b)� (b →
a)) ∈ m iff m ∈ N⊥((a→b)�(b→a)). Hence, U = N⊥((a→b)�(b→a)), that is U is
clopen in Spec(Co−An(A)).

Proposition 4.6. The family {Pm}m∈Spec(Co−An(A)) canonically determines a
sheaf representation of A.

Proof. Apply Proposition 4.5 and Theorem 3.2.

Let (FA, pA, Spec(Co−An(A))) be the sheaf space of BL-algebras and

ϕ : A → Γ(Spec(Co−An(A)), FA)

the sheaf representation determined by the family {Pm}m∈Spec(Co−An(A)). Then
(FA)m = A/Pm for all m ∈ Spec(Co−An(A)), pA : FA → Spec(Co−An(A)) is
the canonical projection and ϕ(a) = [a] for all a ∈ A, where [a] ∈ Γ(Spec(Co−
An(A)), FA) is defined by [a](m) = a/Pm.

By Proposition 4.3, it follows that ϕ is a monomorphism of BL-algebras,
embedding A into the BL-algebra of global sections of the BL-sheaf space
(FA, pA, Spec(Co−An(A))).

Proposition 4.7. FA is a Hausdorff space.

Proof. Let a/Pm 6= b/Pn ∈ FA. We have two cases:
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(1) m 6= n. Since Spec(Co − An(A)) is Hausdorff, there are U, V open in
Spec(Co − An(A)) such that m ∈ U, n ∈ V and U ∩ V = ∅. Then,
[a](U) ∩ [b](V ) = ∅, a/Pm ∈ [a](U) and b/Pm ∈ [b](V ).

(2) m = n. Let U = {q ∈ Spec(Co − An(A)) | a/Pq 6= b/Pq}. Applying
Proposition 4.5, we get that U is open in Spec(Co − An(A)), m ∈ U ,
hence a/Pm, b/Pm ∈ [b](U). Obviously, [a](U) ∩ [b](U) = ∅.

In the sequel, we shall denote by A∗ the BL-algebra Γ(Spec(Co−An(A)), FA).

For U ⊆ Spec(Co−An(A)), define eU : Spec(Co−An(A)) → FA by

eU (m) =
{

0/Pm if m ∈/ U
1/Pm if m ∈ U

Remark 4.8. For any U ⊆ Spec(Co−An(A)), pA ◦ eU = 1Spec(Co−An(A)).

Proposition 4.9. Let U ⊆ Spec(Co − An(A)). If U is a clopen subset of
Spec(Co−An(A)), then eU ∈ A∗.

Proof. A basic open set in FA is of the form [a](V ), where a ∈ A and V is open
in Spec(Co−An(A)). It is clear that

e−1
U ([a](V )) = (V ∩ U ∩ [ [a] = 1 ] ) ∪ (V ∩ U c ∩ [ [a] = 0 ] ),

where U c := Spec(Co−An(A)) \ U . Applying Proposition 3.1(i) and the facts
that U,U c are open, it follows that e−1

U ([a](V )) is open in Spec(Co − An(A)).
Hence, eU is continuous.

Proposition 4.10. If U is clopen in Spec(Co−An(A)), then eU ∈ B(A∗) and
the complement of eU is eUc , where U c is the set Spec(Co−An(A))− U .

Proof. Since U is clopen, we have that U c is also clopen. Hence, eUc ∈ A∗

too. Obviously, eU ∨ eUc = 1 and eU ∧ eUc = 0. That is, eU ∈ B(A∗) and the
complement of eU is eUc .

Theorem 4.11. A∗ is a Baer extension of the BL-algebra A.

Proof. Since ϕ : A → A∗ is a monomorphism, it remains to prove that A∗ is a
Baer BL-algebra.

For any σ ∈ A∗, let Uσ = {m | σ(m) 6= 1/Pm}. Then, by Proposition 3.1(iii),
Uσ is clopen in Spec(Co−An(A)). For any X ⊆ A∗, let UX =

⋃
σ∈X Uσ. Since

Spec(Co − An(A)) is extremally disconnected, it follows that UX is a clopen
subset of Spec(Co−An(A)), hence eUX

∈ B(A∗).
In the sequel, we shall prove that for any X ⊆ A∗,

⊥X =< eUX
> .
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First, let us prove

(∗) ⊥X = {σ ∈ A∗ | Uσ ∩ UX = ∅}.

For any σ ∈ A∗, we have that
σ ∈ ⊥X iff σ ∨A∗ τ = 1 for all τ ∈ X

iff for all τ ∈ X and all m ∈ Spec(Co−An(A)),
σ(m) ∨A/Pm

τ(m) = 1/Pm

iff for all τ ∈ X and all m ∈ Spec(Co−An(A)),
σ(m) = 1/Pm or τ(m) = 1/Pm,

since A/Pm is a BL-chain, Pm being a prime filter of A. Hence,
σ ∈/⊥X iff there exist τ ∈ X and m ∈ Spec(Co−An(A)) such that

σ(m) 6= 1/Pm and τ(m) 6= 1/Pm

iff there exists m ∈ Spec(Co−An(A)) such that m ∈ Uσ

and there exists τ ∈ X such that m ∈ Uτ

iff there exists m ∈ Spec(Co−An(A)) such that
m ∈ Uσ and m ∈

⋃
τ∈X Uτ

iff there exists m ∈ Spec(Co−An(A)) such that
m ∈ Uσ ∩

⋃
τ∈X Uτ

iff Uσ ∩
⋃

τ∈X Uτ 6= ∅
iff Uσ ∩ UX 6= ∅.

Hence, we have got (∗). It remains to prove that

< eUX
>= {σ ∈ A∗ | Uσ ∩ UX = ∅}.

Let σ ∈ A∗. Then σ ∈< eUX
> iff eUX

≤ σ iff eUX
(m) ≤ σ(m) for all m ∈

Spec(Co−An(A)) iff σ(m) = 1/Pm for all m ∈ UX iff m ∈ (Uσ)c for all m ∈ UX

iff UX ⊆ (Uσ)c iff Uσ ∩ UX = ∅.

Lemma 4.12. For any σ ∈ A∗ there is a finite partition {Ui | i = 1, n} of
Spec(Co−An(A)) into nonempty disjoint clopen subsets and there are elements
{ai | i = 1, n} of A such that σ = ([a1]� eU1) ∨ · · · ∨ ([an]� eUn

).

Proof. Let σ ∈ A∗. Since Spec(Co − An(A)) is Boolean, we can apply [8,
Lemma 3.2] to obtain a finite partition {Ui | i = 1, n} of Spec(Co − An(A))
into nonempty disjoint clopen subsets and thee elements {ai | i = 1, n} of A
such that, for any m, σ(m) = [ai](m) = ai/Pm, where m ∈ Ui. It follows that
σ = ([a1]� eU1) ∨ . . . ∨ ([an]� eUn

).

Proposition 4.13. If A is a Baer BL-algebra, then eU ∈ ϕ(A) for any clopen
subset U of Spec(Co−An(A)).

Proof. Let U be a clopen subset of Spec(Co − An(A)). Hence, there is H =
⊥X ∈ Co − An(A) such that U = NH = {m ∈ Spec(Co − An(A)) | ⊥X ∈ m}.
Since A is a Baer BL-algebra, there is t ∈ B(A) such that ⊥X =< t >. Applying
Proposition 2.9(v), and the fact that t = t−−, we get that ⊥X = ⊥e−, so
⊥⊥X = ⊥⊥t−.
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We have that, for any m ∈ Spec(Co − An(A)), A/Pm is a BL-chain, so
A/Pm is directly indecomposable, that is B(A/Pm) = {1/Pm, 0/Pm}. Since
t− ∈ B(A), it follows that [t−](m) = t−/Pm ∈ B(A/Pm). Hence,

[t−](m) =
{

0/Pm if t− ∈/ Pm

1/Pm if t− ∈ Pm.

For all m ∈ Spec(Co − An(A)), we get that m ∈ U iff ⊥X ∈ m iff ⊥⊥X ∈/ m
iff ⊥⊥t− ∈/ m iff t− ∈ Pm, by Proposition 4.2(i). Hence, eU (m) = 1/Pm iff
[t−](m) = 1/Pm for all for all m ∈ Spec(Co − An(A)). Hence, eU = [t−], so
eU = ϕ(t−) ∈ ϕ(A).

Theorem 4.14. If A is a Baer BL-algebra, then

ϕ : A ∼= Γ(Spec(Co−An(A)), FA).

Proof. It remains to prove that ϕ is surjective. If σ ∈ Γ(Spec(Co−An(A)), FA),
then by Lemma 4.12, there is a finite partition {Ui | i = 1, n} of Spec(Co −
An(A)) into nonempty disjoint clopen subsets and the elements {ai | i = 1, n}
of A such that σ = ([a1]�eU1)∨ . . .∨ ([an]�eUn). Applying Proposition 4.13, it
follows that there are elements {ti | i = 1, n} such that eUi

= [ti] for any i = 1, n.
Hence, σ = [(ai� t1)∨ . . .∨ (an� tn)] = ϕ((ai� t1)∨ . . .∨ (an� tn)) ∈ ϕ(A).
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