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Abstract

In this paper we define Baer BL-algebras as BL-algebras with the
property that co-annihilator filters are generated by central elements. We
use sheaf-theoretic techniques to construct a Baer extension of any BL-
algebra, that is to embed any nontrivial BL-algebra A into a Baer BL-
algebra A*. The embedding turns to be an isomorphism if A is itself a
Baer BL-algebra.
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Introduction

In 1998, Héjek [14] introduced a very general many-valued logic, called Basic
Logic (or BL), with the idea to formalize the many-valued semantics induced
by a continuous ¢-norm on the unit real interval [0,1]. This Basic Logic turns
to be a fragment common to three important many-valued logics: Ng-valued
Lukasiewicz logic, Gddel logic and Product logic. The Lindenbaum-Tarski al-
gebras for Basic Logic are called BL-algebras. Apart from their logical interest,
BL-algebras have important algebraic properties and they have been intensively
studied from an algebraic point of view.

The aim of this paper is to construct a Baer extension of any BL-algebra,
that is to embed any nontrivial BL-algebra A into a Baer BL-algebra. Baer
BL-algebras are BL-algebras with the property that co-annihilator filters are
generated by central elements. The definition is similar to the one of Baer
rings, extensively studied (see [15, 17, 18, 7, 21, 22, 23] or, for some recent
papers, [3, 4, 5]), or Baer MV-algebras, defined in [12] (also studied under the
name of strongly stonian MV-algebras in [1]).



In order to construct the Baer extension of a BL-algebra, we use sheaf-
theoretic techniques inspired by Keimel’s construction for rings and semigroups
[16], which is similar to the methods used by Kist in [17]. Thus, for any BL-
algebra A we construct a Hausdorff BL-sheaf space having as a base space the
complete Boolean algebra Co— An(A) of co-annihilator filters of A, and it turns
out that the BL-algebra of global sections, which we will denote by A*, is a
Baer extension of A. Moreover, if A is a Baer BL-algebra, then A = A*.

1 BL-algebras. Definitions and first properties
A BL-algebra [14] is an algebra (A, A, V,®,—,0,1) with four binary operations

AV, ®, — and two constants 0,1 such that (4,A,V,0,1) is a bounded lattice,
(A,®,1) is a commutative monoid, and for all a,b,c € A,

c<a—b iff a®c<b (1.1)
anNb = a®(a—b)
(a—=bVb—a = L

In order to simplify the notation, a BL-algebra (A, A,V,®,—,0,1) will be re-
ferred by its support set A.

A BL-algebra A is nontrivial iff 0 # 1. For any BL-algebra A, the reduct
L(A) = (A,A,V,0,1) is a bounded distributive lattice. A BL-chain is a totally
ordered BL-algebra, i.e. a BL-algebra such that its lattice order is total.

For any a € A, we define a— = a — 0. We denote the set of natural numbers
by w. We define a° =1 and @™ = a"! ®a for n € w — {0}.

The following properties hold in any BL-algebra A and will be used in the
sequel:

a®b < aAb<ab
a—b=1 iff a<b
(avb)®(aVe) < aV(boc)

a®a = 0
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Let A be a BL-algebra. A filter of A is a nonempty set F' C A such that for
all a,b € A,
(i) a,b € F implies a ©® b € F;
(i) a € Fand a < b imply b € F.
Trivial examples of filters are {1} and A. A filter F of A is proper iff ' # A.
Any filter of A is also a filter of the lattice L(A).

A proper filter P of A is called prime provided that it is prime as a filter of
L(A), that is

aVbeP implies a€ Por be P.



In the sequel, we shall denote by F(A) the set of filters of A, and by Spec(A)
the set of prime filters of A.

If X C A, then the filter of A generated by X will be denoted by < X >.
We have that < () >= {1} and, if X # 0,

<X> = {yeA|n1o...0z, <y

for some n € w — {0} and some z1,...,z, € X}.

For any a € A, < a > denotes the principal filter of A generated by {a}.
Then,
<a>={be A|a" <bfor somen cw—{0}}.

It follows immediately that < 1 >= {1} and < 0 >= A.

Proposition 1.1. (F(A), Q) is a complete lattice. For every family {F;}icr of
filters of A, we have that
ANF = (F.
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It is easy to see that if ), G are filters of A, then
FVG = <FUG> = {acA|boOc<aforsomebe F,ce G}. (1.9)

Proposition 1.2. (i) a <b implies < b >C< a >;
(i) <aVb>=<a>N<b>;

(i) < a>V <b>=<aAb>=<a®b>;

(iv) if F is a filter of A, then a € F iff <a >C F;
(v) <a>={1} iffa=1.

Proof. (i) Let ¢ €< b >. Then there is n € w — {0} such that ¢ > " > a™,
hence c €< a >.

(ii) By [9, Lemma 4.11].

(iii) Applying (i), we obtain that < a >V <b>C<aAb>C< a®b >, since
a®b<aAb<a,b Itremains to prove that <a®b>C<a >V <b>. Let
x €< a® b >; that is there is n € w — {0} such that a” © b" = (e © b)" < z.
Applying now the fact that a™ €< a >,b" €< b >, and (1.9), it follows that
reE<a>V<h>.

(iv),(v) Obviously. O

With any filter F' of A we can associate a congruence relation = (mod F') on A
by defining

a=bmodF)iffa wbe Fandb—a € Fiff (a—b)®(b—a) € F.

For any a € A, let a/F be the equivalence class a/=(mod r)- If we denote by
A/F the quotient set A/=(moqr), then A/F becomes a BL-algebra with the
natural operations induced from those of A.



Let B(A) be the Boolean algebra of all complemented elements in the dis-
tributive lattice L(A). We shall refer to B(A) as the center of A and to elements
of B(A) ascentral elements of A.

Proposition 1.3. [10, Proposition 1.9]
Let e € A. The following are equivalent:
(i) e € B(A);
(ii)e@e=eande=e"";

(iii) e e =e and e~ — e = ¢;

(iv) eve =1.

Proposition 1.4. Suppose that a,b € A and e, f € B(A). Then
(i) <e>={a€Ale<a};

(ii)) <e>=eVA={eVal|ac A};

(1)) e = fiff <e>=< f>;

(iv) e ®@a=eAa;

(v)ene  =0;

(vi)avVe =1liffe<aiffac<e>.

Proof. (i) Apply Proposition 1.3(ii).

(il) "C" If a €< e >, then e < a,s0 a = e Va, that isa € e vV A.

72" Apply (i).

(iii) If < e >=< f >, then, by (i) e €< f >,s0e > f,and f €<e >, s0e < f.
(iv) By [10, Lemma 1.11].

(

(

v) Apply (iv) and (1.7).

vi)Ife < a, theneAa =e, hence l = e~ Ve =e" V(eAa) = (e" Ve)A(e" Va) =
1AN(e”Va)=e" Va. Conversely, if aVe™ =1, thene=eAl=eA(aVe )=
(eNa)V(ene )=(eNa)VO=eAa,s0e<a. O

A BL-algebra A is called directly indecomposable iff A is nontrivial and whenever
A= Ay x A; then either Ay or A, is trivial.

Proposition 1.5. [10, Proposition 1.12]
A BL-algebra A is directly indecomposable iff B(A) = {0,1}.

Proposition 1.6. [10, Proposition 1.13]
Any BL-chain is directly indecomposable.

2 Co-annihilators

Let F' be a filter of A and a € A. The co-annihilator of a relative to F is the
set
(F,a)={x € AlaVaxeF}

Proposition 2.1. Let F,G be filters of A and a,b € A. Then
(i) (F,a) is a filter of A;

(ii)) F C (F,a);

(iti) a < b implies (F,a) C (F,b);



(iv) F C G implies (F,a) C (G,a);

(v) (F,a) = Aiffa € F;

(vi) (F,a)N(F,b) = (F,aAb) = (F,a®b);

(vii) (F,a) N (G,a) = (FNG,a) and (F,a) U (G,a) = (FUG,a);
(viii) ((F,a),b) = ((F,b),a) = (F,aVb).

Proof. (i) We have that avV1 =1 € F, hence 1 € (F,a). If z <y and z € (F,a),
then xVa € Fand zVa < yVa. Hence, yVa € F,ie. y € (F,a). Assume that
x,y € (F,a),i.e. xVa,yVa € F. Since, by (1.6), (z@y)Va>(zVa)®(yVa) € F,
it follows that (@ y)Va e F,s0z 0y € (F,a).

(ii) Let x € F. ThenxVa>x € F, hence z Va € F. That is, x € (F, a).

(iii) Let € (F,a). ThenxVa <zVband zVa € F. It follows that z Vb € F,
iex € (F,b).

(iv) Let € (F,a). Then z Va € F C G. Hence, x € (G, a).

(v) If (F,a) = A, then 0 € (F,a), hence a =0V a € F. If a € F, then for
any r € A, a < xVa, hence xVa € F. That is, for any z € A, we have that
x € (F,a).

(vi) Since a ®b < a Ab < a,b, by (iii), it follows that (F,a ®b) C (F,a Ab) C
(F,a)N(F,b). Conversely, let € (F,a)N(F,b), hence xtVa € FandzVbe F.
By (1.6), we get that xV (a ©b) > (xVa)® (xVb) € F. That is, z € (F,a ©b).
(vii) Obviously, using (iii).

(viii) We have that = € ((F,a),b) iff x Vb € (F,a) iff (zx V) Va € F iff
zV(aVb) € Fiff x € (F,aVb), and, similarly, z € ((F,b),a) iff z € (F,aVb). O

For any a,b € A, we shall denote by (b, a) the co-annihilator (< b >, a).

Proposition 2.2. Let a,b € A. Then
(i) (a,0) = A;

(i1) (bya) = (bya AND) = (b,a ® b);

(i1i) (b,a) = (a Vb, a).

Proof. (i) Apply Proposition 2.1(v).

(ii) By Proposition 2.1(vi), we get that (b,a Ab) = (b,a ®b) = (b,a) N (b,b) =
(bya)N A= (b,a).

(iii) Applying Proposition 1.2(ii) and Proposition 2.1(vii), it follows that (a V
ba)=(<aVb>a)=(<a>N<b>a)=(a,a)N(ba)=(ba). O

For any non-empty subset X of A, the co-annihilator of X is the set
‘X ={acAlaVvax=1forany z € X}.
It is easy to see that A = {1} and 10 = +{1} = A.

Proposition 2.3. Let ) # X,Y C A, (X;)iecr € A and F be a filter of A.
Then,

(i) L X is a filter of A;

(i) If X CY, then 1Y C+X and ++X C 1Y,

(iii) X C 11X;



(iv) Ly = J_J_J_X’.

(W) tX=1<X>;

(vi) < X >N+ X = {1};

(vii) FN+F = {1};

(viii) ~ F is a prime filter iff F is a chain and F # {1};

(ix) Nier X = J'(Uiel Xi).

Proof. (i)-(viii) By [9, Proposition 4.38, 4.39, 4.40, 4.42].

(ix) Let a € A. Then a € ﬂieIlXi ifaetX; forallieIiffaVvae=1forall

veX,ieliffavae=1foralze ;X iff ac (U Xi) O
Let us recall some facts from lattice theory (see [13]). Let (L, V, A,0) be a lattice

with 0. An element a* € L is a pseudocomplement of a € L if

aNa*=0and aAxz=0 imply z<a"

A bounded lattice L is called pseudocomplemented iff every element has a pseu-
docomplement.

Proposition 2.4. The lattice F(A) is pseudocomplemented. For any filter F,
its pseudocomplement is ~F.

Proof. By Proposition 2.3(vii), F' Ax(a) LF=Fn+F ={1}. Let G be a filter
of A such that F Ar4y G = FNG = {1}. We shall prove that G C +F. Let
a € G. For any © € F, we have that aVz € FNG = {1}, sinceaVz >z € F
and aVz >a € G. Hence, a Ve =1 forany x € F, so a € L F. That is, - F is
the pseudocomplement of F. O

We define
Co— An(A) = {*F | F € F(A)}.
The elements of Co — An(A) will be called co-annihilator filters of A .
Remark 2.5. Co— An(A) = {+X | X C A}
Proof. Apply Proposition 2.3(v). O
Proposition 2.6. Let F,G be filters of A.
(i) F € Co— An(A) iff t1F = F;
(i) if F,G € Co— An(A), then FNG € Co — An(A);
(i11) {1}, A € Co— An(A);
(iv) for F,G € Co— An(A), define F'Vco_ana) G = LEFNLG). Then

(CO — AH(A), ﬂ, \/Co—An(A)a L? {1}7 A)

s a Boolean algebra.
(v) Co — An(A) is a complete Boolean algebra;
(vi) for any family (F;);c; € Co — An(A),

LL(m Fz) — m LLFi;
il il
(vii) if F,G € Co— An(A), then F'N G C F'Vgo_an(a) G-



Proof. (i)-(iv) By well-known results from lattice theory (see, e.g., [13]).

(v) Let (F;)ier € Co— An(A). Hence, for all i € I, there is X; C A such that
F; = +X;. Applying Proposition 2.3(ix), it follows that (,c; F; = N;e; ~Xi =
H(User Xi) € Co—An(A). Thus, Co—An(A) is closed to arbitrary intersections,
so it is a complete Boolean algebra.

(vi) Applying (vi) and (i), we get that ~+(N,c; Fi) = Mics Fi = Nier —H 5
(vii) Obviously, since F,G C F' Vgo—an(a) G- O

Remark 2.7. If A is a BL-chain, then the only co-annihilator filters are A and
{1}, so Co — An(A) is isomorphic with Lo, the two-elements Boolean algebra.

We shall denote by
Lo =*{a}.

It is easy to see that 11 = A, -0 = {1}, 10 = A4, and ++1 = {1}.
Remark 2.8. For any X C A, *X =,y .

Proposition 2.9. Let a,b € A and e € B(A). Then
(i) ta=(l,a) ={z € AlzVa=1};

(i) a < b implies ~a C +b;

(i) Ya = A iff a = 1;

(iv) tan+b="1(aAnb) =*(a®b);

(v) te =<e™ >.

Proof. (i) (1,a) = (< 1>,a) = {1},a)={r € A|xzVa=1} =1a.
(ii) @ < b implies < b >C< a >. Hence, applying Proposition 2.3(v), (ii), we
get that ta=1 <a>C+ <b>="10b.
(iii) fa=Aiff0 € taif OVa=1iffa = 1.
(iv) We have that z € tan*bif ava=a2Vvb=1iff (xVa)A (zVb) =1iff
zV(aAb)=1iff z € L(a Ab). Hence, tfan+b="1(aAb). Sincea®b<aAb,
by (ii), it follows that +(a ® b) C +(a A b). Conversely, if z V (a A b) = 1, then
xVa=zVb=1,s0 (zVa)®(xVb) =1. By (1.6), it follows that zV (a®b) = 1,
that is z € *(a ®b).
(v) We have that a € teif ave = 1if ave = = 1iff a €< e” >, by
Proposition 1.4(vi).

U

Proposition 2.10. Let a,b € A. Then

(i) *Hra={xrc Alzvy=1 for any y € A such that yVa =1};
(ii) a € t1a;

(iii) a < b implies
(iv) b € +a implies *+a C Lb;
(v) tranttb=~LL(aVvb).

J_J_b C J_J_a;

Proof. (i) By the definition.

(ii) It is an immediate consequence of (i).

(iii) Apply Proposition 2.9(ii) and Proposition 2.3(ii).
(iv) By Proposition 2.3(ii).



(v) By Proposition 2.3(v), Proposition 1.2(iii), and Proposition 2.6(vi), it follows
that tr(avb) =1t <avi>=tt(<a>n<b>) =+t <a>ntt <b>=
1l,ALLp,

O

Proposition 2.11. Let a,b € A. Then
(Z) La Vo—An(A) b= l(a\/ b),‘
(i) YaVvLb C t(aVvb).

Proof. (i) Applying Proposition 2.6(v), Proposition 2.10(v), and Proposition
2.3(iv), we get that ~aVee—an(a) 70 = F(Fran++b) =+ (avb) = +(a V).
(ii) Apply Proposition 2.6(vii) and (i). O

We shall call a co-annihilator filter of the form “a, a € A, a co-annulet and

denote with Co — Ang(A) the set of co-annulets of A.

Proposition 2.12. Co— Ang(A) is a bounded sublattice of the Boolean algebra
Co— An(A).

Proof. Apply Proposition 2.9(iv) and Proposition 2.11(i) to get that Co —
Ang(A) is a sublattice of Co — An(A). Finally, A = +1 € Co — Ang(A), and
{1} =10 € Co— Ang(A). O

3 Sheaf spaces and sheaf representations of BL-
algebras

The notion of a BL-sheaf space (or sheaf space of BL-algebras) is defined fol-
lowing the general line of sheaf spaces of universal algebras [8]. The following
properties are presented in detail in [19, 11], but for the sake of completeness
we recall them here.

A sheaf space of BL-algebras (or a BL-sheaf space) is a triple (F,p, X) such
that the following properties are satisfied:
(i) F and X are topological spaces;
(ii) p: F — X is a local homeomorphism from F onto X;
(iii) for each z € X, p~}({z}) = F, is a nontrivial BL-algebra with operations
denoted by V., Az, Oz =2, 0z, 1a;
(iv) the functions (a, b) — aVy b, (a,b) — aNgb, (a,b) — a®yb, (a,b) — a —, b
from the set {(a,b) € F x F | p(a) = p(b)} into F' are continuous, where
z = pla) = p(b);
(v) the functions 0,1 : X — F', which assign to each x in X the zero 0, and the
unit 1, of F}, respectively, are continuous.

X is known as the base space, I’ as the total space and F, is called the stalk of
FatzeX.

If Y C X, then a section o over Y is a continuous map o : Y — F satisfying
(poo)(y) =y for all y € Y. The set of all sections over Y form a nontrivial BL-
algebra with the operations defined pointwise, that will be denoted by T'(Y, F)).
The elements of I'(X, F') are called global sections.



For every o,7 € T'(Y, F'), we shall use the following notation:

o=71l={yeY|oy) =71y}

Proposition 3.1. Let (F,p, X) be a BL-sheaf space.

(i) for any Y C X and 0,7 € (Y, F), the subset [0 = 7| is open in Y;

(i) the family {o(U) | U is open in X,0 € T'(U, F)} is a basis for the topology
of F;

(i1i) if F is Hausdorff then [0 = 7] is clopen in X for all o,7 € T(X, F).

Following Mulvey [20], by a sheaf representation (or simply representation)
of a nontrivial BL-algebra A will be meant a BL-morphism

p: A-T(X,F)

from A to the BL-algebra I'( X, F) of global sections of a BL-sheaf space (F, p, X).
For each x € X, we define

Yz A= Fy,  pr(a) = ¢(a)(z) for all a € A,
K, = Ker(p,) = {a € A| p(a)(z) = 1},

It is easy to see that ¢, is a BL-morphism, so K, is a proper filter of A for
every © € X. Moreover, Ker(¢) =) K, hence ¢ is a monomorphism iff
Moex Ko = {11,

A filter space of a BL-algebra A is a family {7}, }.cx of proper filters of A,
indexed by a topological space X. We say that a filter space {T, },cx canonically
determines a representation of A if there is a representation ¢ : A — I'(X, F)
such that T, = K, for all x € X.

Theorem 3.2. [11, Theorem 2]

Let A be a nontrivial BL-algebra and {T,}.cx a filter space of A such that the
subset V(a) = {x € X | a € Ty} is open in X for alla € A. Then {Ty}pex
canonically determines a representation of A.

reX

The BL-sheaf space (F4,pa,X) and the representation ¢ : A — I'(X, F4) are
constructed in the following way, given in [8] for universal algebra. Let Fa
be the disjoint union of the sets {A/T,}.ex and pa : F4 — X the canonical
projection, so pzl({x}) = A/T, for all x € X. For all x € X, T, is a proper
filter of A, so A/T, is a nontrivial BL-algebra. For each a € A, define the
map [a] : X — Fy4 by [a](x) = a/T,. Endow F4 with the topology generated
by the family {[a](U) | @ € A and U is open in X}. Applying [8, Corollary
2], we get that (Fa,pa, X) is a sheaf space of BL-algebras and the function
p: A—T(X,Fa), defined by ¢(a) = [a] for all a € A, is a representation of A.
It is easy to see that K, =T, for all x € X.

4 Baer extensions of BL-algebras

A BL-algebra A is called Baer if every co-annihilator filter of A is a principal
filter of A generated by an element from the center B(A).



Remark 4.1. Let A be a BL-algebra. The following are equivalent:

(i) A is Baer;

(i1) for all F € Co— An(A), there is e € B(A) such that F =< e >=eV A;
(iii) for all F € Co— An(A), there is a unique e € B(A) such that F =< e >=
eV A;

(iv) for all X € A, there is a unique e € B(A) such that *X =< e >=eV A.

Proof. (i) < (ii) By the definition and Proposition 1.4(ii).
(ii) < (ui1) Apply Proposition 1.4(iii).
(#i1) < (iv) By Remark 2.5. O

Let A be a BL-algebra. A Baer BL-algebra A* is called a Baer extension of A
if A is isomorphic to a BL-subalgebra of A*.

By Proposition 2.6(v), Co — An(A) is a complete Boolean algebra. Let
Spec(Co — An(A)) be the set of its prime filters. Then Spec(Co — An(A)) is a
Boolean space and the clopen sets of the basis are all the sets of the form

Ny = {m € Spec(Co — An(A)) | H € m},

where H € Co — An(A).

Let us recall that a topological space X is called extremally disconnected if
the closure U of any open subset U of X is also an open subset of X. Since
Co — An(A) is a complete Boolean algebra, it follows that Spec(Co — An(A))
is extremally disconnected (see, e.g., [2, Proposition 10.3.6, p.209]).

For any m € Spec(Co — An(A)), we define

Py = U{H € Co— An(A) | H ¢m} = U{H € Co— An(A) | m ¢ Ny}

Proposition 4.2. Let m € Spec(Co — An(A)) and a € A. Then

(i) a € Py, iff tta ¢m;

(11) Py, is a prime filter of A.

Proof. (i) Suppose that a € P,,. Then there is H € Co—An(A) such that a € H
and H ¢ m. By Proposition 2.3(ii), from {a} C H we get that t+a C 11 H = H.
If t+a € m, since *+a, H € Co — An(A), and m is a filter of Co — An(A) we
get that H € m, that is a contradiction. Hence, ~*a ¢ m. Conversely, suppose
that t1a ¢ m. If we take H = +1a, then H € Co— An(A), H ¢ m, and a € H,
by Proposition 2.10(ii). Hence, a € P,,.

(ii) Since m is a proper filter of Co — An(A), we have that {1} ¢ m. Hence,
111 = {1} ¢ m. By (i), we get that 1 € P,,. Let a,b € P,,. Hence, there
are Hy, Hy € Co — An(A) such that Hy, Hy dm, a € Hy,b € Hy. Let H =
Hiy Veo—ancay Ha. Then, H € Co — An(A),a,b € H and H ¢ m, since m is
prime in Co— An(A). From a,b € H and the fact that H is a filter of A, we get
that a®b € H. Hence, H € Co— An(A) is such that a©b € H and H ¢ m, that
is, a ® b € P,,. Suppose now that a,b are in A such that a <b and a € P,,. By
(i) we have that **a ¢ m. From a < b and Proposition 2.10(iii) it follows that
+Lp C Lta. Since m is a filter of Co — An(A), we get that ~+b ¢ m. Hence,
applying again (i), b € P,,. Thus, we have got that P, is a filter of A. We have
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that 10 = A € m, since m is a filter of Co — An(A). Hence, by (i), 0 € Py,.
That is, P, is proper. Let us prove that P,, is a prime filter of A. Let a,b € A
such that a Vb € Py, so, by (i), 21 (a Vv b) ¢ m. By Proposition 2.10(v), we get
that *taNL+b ¢m. Since m is a filter of Co — An(A), it follows that 1a ¢m
or 11b ¢ m. Hence, again by (i), a € P,, or b € P,. O

Proposition 4.3.
[({ P | m € Spec(Co — An(A))} = {1}.

Proof. Let a # 1 in A. Then +a # A, by Proposition 2.9(iii). Since A is the
greatest element of the Boolean algebra Co — An(A), there is a prime filter n of
Co — An(A) such that *a ¢n. Since +a V Co— An(A) +1ta = A and n is prime, it
follows that *+a € n, hence, by Proposition 4.2(i), a ¢ P,. O

Corollary 4.4. A is isomorphic to a subdirect product of the family
{A/Pm}me?pec(CofAn(A))-
Proof. Apply the above proposition and [6, Lemma I11.8.2, p. 56]. O

Proposition 4.5. For any a,b € A, the set {m € Spec(Co— An(A)) | a/P,, =
b/P,,} is clopen in Spec(Co — An(A)).

Proof. Let U = {m € Spec(Co—An(A)) | a/P,, = b/P,,}. We have that m € U
iff (a—0)©(b—a)ePy,if 1 ((a—b) o (b—a))¢miff L((a—b)o (b
a)) cEm iff m € Ni((a—)b)@(b—m))' Hence, U = Ni((a—»b)@(b—m)ﬁ that is U is
clopen in Spec(Co — An(A)). O

Proposition 4.6. The family { Py }mespec(Co—an(a)) canonically determines a
sheaf representation of A.

Proof. Apply Proposition 4.5 and Theorem 3.2. O
Let (Fa,pa,Spec(Co— An(A))) be the sheaf space of BL-algebras and

p: A—T(Spec(Co— An(A)), Fa)

the sheaf representation determined by the family { Pp } meSpec(Co—an(a)). Then
(Fa)m = A/P,, for all m € Spec(Co— An(A)), pa : Fs — Spec(Co— An(A)) is
the canonical projection and ¢(a) = [a] for all a € A, where [a] € T'(Spec(Co —
An(A)), Fa) is defined by [a](m) = a/Pp,.

By Proposition 4.3, it follows that ¢ is a monomorphism of BL-algebras,
embedding A into the BL-algebra of global sections of the BL-sheaf space
(Fa,pa, Spec(Co — An(A))).

Proposition 4.7. F4 is a Hausdorff space.

Proof. Let a/P,, # b/P, € F4. We have two cases:
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(1) m # n. Since Spec(Co — An(A)) is Hausdorff, there are U,V open in
Spec(Co — An(A)) such that m € Uyn € V and UNV = (. Then,
[a](U) N BI(V) = 0,/ P € [a](U) and b/ Py, € [B](V).

(2) m = n. Let U = {q € Spec(Co — An(A)) | a/P; # b/P,}. Applying
Proposition 4.5, we get that U is open in Spec(CTo — An(A)), m € U,
hence a/P,,,b/ P, € [b](U). Obviously, [a](U) N [b](U) = 0.

O

In the sequel, we shall denote by A* the BL-algebra I'(Spec(Co — An(A)), F4).
For U C Spec(Co — An(A)), define ey : Spec(Co — An(A)) — Fa by
_JOo/P, ifm¢U
evlm) = { 1/Pn ifmeU
Remark 4.8. For any U C Spec(Co — An(A)), pa o ev = lgpec(Co—An(A))-

Proposition 4.9. Let U C Spec(Co — An(A)). If U is a clopen subset of
Spec(Co — An(A)), then ey € A*.

Proof. A basic open set in Fy is of the form [a](V'), where a € A and V is open
in Spec(Co — An(A)). It is clear that

eg' ([d(V)=(VnUN[[a] =1]) U(VNU“N[[a] =0]),

where U¢ := Spec(Co — An(A)) \ U. Applying Proposition 3.1(i) and the facts
that U, U¢ are open, it follows that eg;'([a](V)) is open in Spec(Co — An(A)).
Hence, ey is continuous. O

Proposition 4.10. If U is clopen in Spec(Co — An(A)), then ey € B(A*) and
the complement of ey is eye, where UC is the set Spec(Co — An(A)) —U.

Proof. Since U is clopen, we have that U€ is also clopen. Hence, ey € A*
too. Obviously, ey Veye =1 and ey A eye = 0. That is, ey € B(A*) and the
complement of ey is ege. O

Theorem 4.11. A* is a Baer extension of the BL-algebra A.

Proof. Since ¢ : A — A* is a monomorphism, it remains to prove that A* is a
Baer BL-algebra.

For any o € A*, let U, = {m | o(m) # 1/P,,}. Then, by Proposition 3.1(iii),
Us is clopen in Spec(Co — An(A)). For any X C A%, let Ux = J,cx Us. Since
Spec(Co — An(A)) is extremally disconnected, it follows that Ux is a clopen
subset of Spec(Co — An(A)), hence ey, € B(A*).

In the sequel, we shall prove that for any X C A*,

X =<epy, >.
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First, let us prove
(x) *X ={occ A" |U,NUx = 0}.

For any o € A*, we have that
cetX iff oVager=1lforallTeX
iff  for all 7 € X and all m € Spec(Co — An(A)),
o(m)Vasp, T(m) =1/Pn
iff for all 7 € X and all m € Spec(Co — An(A)),
o(m) = 1/ Py or 7(m) = 1/ Py,
since A/P,, is a BL-chain, P, being a prime filter of A. Hence,
o ¢+X iff there exist 7 € X and m € Spec(Co — An(A)) such that
o(m) # 1/ Py and 7(m) £ 1/P,,
iff  there exists m € Spec(Co — An(A)) such that m € U,
and there exists 7 € X such that m € U,
iff  there exists m € Spec(Co — An(A)) such that
m €U, andm € |, Ur
iff  there exists m € Spec(Co — An(A)) such that
m € Us NU,ex Ur
iff Uy NU,ex Ur #0
iff U,NUx 7é 0.
Hence, we have got (). It remains to prove that

<eyy >={o€ A" | U, NUx = 0}.

Let 0 € A*. Then o €< ey, > iff ey, < o iff ey (m) < o(m) for all m €
Spec(Co—An(A)) iff o(m) = 1/P,, for allm € Ux iff m € (U, )¢ for all m € Ux
iff Uy C (U,)° it U, N Ux = 0. O

Lemma 4.12. For any o € A* there is a finite partition {U; | i = 1,n} of
Spec(Co— An(A)) into nonempty disjoint clopen subsets and there are elements
{a; |i=1,n} of A such that o = ([a1] ® ey,) V-V (Jan] @ e, ).

Proof. Let 0 € A*. Since Spec(Co — An(A)) is Boolean, we can apply [8,
Lemma 3.2] to obtain a finite partition {U; | i« = 1,n} of Spec(Co — An(A))
into nonempty disjoint clopen subsets and thee elements {a; | i = 1,n} of A
such that, for any m, o(m) = [a;](m) = a;/ Py, where m € U;. It follows that
o= ([a]®ey,) V...V (lan] ©®ev,). O

Proposition 4.13. If A is a Baer BL-algebra, then ey € ¢(A) for any clopen
subset U of Spec(Co — An(A)).

Proof. Let U be a clopen subset of Spec(Co — An(A)). Hence, there is H =
LX € Co— An(A) such that U = Ny = {m € Spec(Co — An(A)) | 1 X € m}.
Since A is a Baer BL-algebra, there is t € B(A) such that -~ X =<t >. Applying

Proposition 2.9(v), and the fact that ¢t = ¢~~, we get that *X = ‘e, so
Lly — Lly—
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We have that, for any m € Spec(Co — An(A)), A/P,, is a BL-chain, so
A/P,, is directly indecomposable, that is B(A/P,,) = {1/P,,0/P,}. Since
t~ € B(A), it follows that [t~ |(m) =t~ /P, € B(A/P,,). Hence,

~ 0/Py ift™ ¢Pp
[t K){ 1/P, ift™ € P,.

For all m € Spec(Co — An(A)), we get that m € U iff 1 X € m iff 1+ X &m
iff +1t= ¢ m iff t= € P, by Proposition 4.2(1). Hence, ey(m) = 1/P,, iff
[t7](m) = 1/P,, for all for all m € Spec(Co — An(A)). Hence, ey = [t7], so
ev = ¢(t7) € p(A). O

Theorem 4.14. If A is a Baer BL-algebra, then
p: A= T (Spec(Co— An(A)), Fa).

Proof. Tt remains to prove that ¢ is surjective. If o € I'(Spec(Co— An(A)), Fa),
then by Lemma 4.12, there is a finite partition {U; | i = 1,n} of Spec(Co —
An(A)) into nonempty disjoint clopen subsets and the elements {a; | i = 1,n}
of A such that o = ([a1]®ey,) V...V ([an] ®ey,). Applying Proposition 4.13, it
follows that there are elements {¢; | i = 1, n} such that ey, = [t;] for any i = 1, n.
Hence, 0 = [(a; ©t1) V...V (an Otn)] = ©((a; ©t1) V...V (an Oty)) € p(A). O
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