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(joint work with Ulrich Kohlenbach)

The talk is a report on joint work [7, 8] with Ulrich Kohlenbach and presents
two applications of proof mining. By proof mining we mean the logical analy-
sis of mathematical proofs with the aim of extracting new numerically relevant
information hidden in the proofs (we refer to [5] for a book treatment).

In 1939, Garrett Birkhoff proved the following generalization of von Neumann’s
Mean Ergodic Theorem.

Theorem 1. [2] Let X be a uniformly convex Banach space and T : X → X be a
linear operator with ‖Tx‖ ≤ ‖x‖ for all x ∈ X. Then for any x ∈ X, the Cesaro
mean (xn) is convergent.

In [1], Avigad, Gerhardy and Towsner address the issue of finding an effective
rate of convergence for (xn) in Hilbert spaces. They show that even for the separa-
ble Hilbert space L2 there are simple computable such operators T and computable
points x ∈ L2 such that there is no computable rate of convergence of (xn). In
such a situation the best one can hope for is an effective bound on the Herbrand
normal form of the Cauchy property of (xn):

(1) ∀ε > 0∀g : N → N ∃N ∈ N ∀i, j ∈ [N,N + g(N)] (‖xi − xj‖ < ε).

The mathematical relevance of this reformulation of convergence was recently
pointed out by T. Tao ([9, 10]), who also uses the term ‘metastability’.

In [4], a general logical metatheorem is proved that guarantees (given a proof of
(1)) the extractability of an effective bound Φ(ε, g, b, η) on ‘∃N ’ in (1) that is highly
uniform in the sense that it only depends on g, ε, an upper bound N 3 b ≥ ‖x‖
and a modulus η of uniform convexity for X, but otherwise is independent from
x,X and T .

We extract [8, Theorem 2.1] such a bound from the proof of Theorem 1:

Φ(ε, g, b, η) := M · h̃K(1), with ‖x‖ ≤ b ∈ N, M :=
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In this way, we provide a finitary version in the sense of T. Tao [9, 10] of the
Mean Ergodic Theorem for uniformly convex Banach spaces and so generalize
similar results obtained for Hilbert spaces by Avigad, Gerhardy and Towsner [1]
and T. Tao [10]. Despite of our result being significantly more general then the
Hilbert space case treated in [1], the extraction of our bound is considerably more
easy compared to [1] and even numerically better.

The second application is in metric fixed point theory, more specifically in the
approximate fixed point theory of asymptotically nonexpansive mappings, intro-
duced in [3].
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One typical result is the following theorem which is otained in [6, Corollary 8]
as corollary of a quantitative result.

Theorem 2. Let (X, ‖ · ‖) be a uniformly convex normed space, C ⊆ X a convex
subset and T : C → C an asymptotically nonexpansive mapping with sequence (kn)
in [0,∞) satisfying

∑∞
i=0 ki < ∞. Let (λn) be a sequence in [a, b] for 0 < a < b < 1

and define the Krasnoselski-Mann iteration of T starting from x ∈ X by

x0 := x, xn+1 := (1− λn)xn + λnTn(xn).

If T has a fixed point, then d(xn, T (xn)) n→∞→ 0.

While there does not seem to exist a computable rate of convergence (see the
discussion in[6]), the general logical metatheorems from [4] guarantee an effective
bound on the ∃N in the Herbrand normal form of the convergence of (‖xn−T (xn)‖)
towards 0:

(2) ∀ε > 0∀g : N → N∃N ∈ N ∀m ∈ [N,N + g(N)] (‖xm − T (xm)‖ < ε).

Such a bound was extracted in [6, Theorem 22]. In [7] we take the proofs from [6]
as our point of departure and generalize the results to uniformly convex hyperbolic
spaces. This, in particular, covers the important class of CAT(0)-spaces (in the
sense of Gromov) and, a-fortiorily, R-trees in the sense of Tits. For CAT(0)-spaces
we get a quadratic bound on the approximate fixed point property of (xn).
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