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Abstract

In this paper we study the pseudo-hoops, structures introduced by B.
Bosbach in [6, 7] under the name of complementary semigroups. We
prove some of their properties and we define the basic concepts of filter
and normal filter. The lattice of normal filters is isomorphic with the
lattice of congruences of a pseudo-hoop. We also study some important
classes of pseudo-hoops. Bounded Wajsberg pseudo-hoops are equivalent
to pseudo-Wajsberg algebras and bounded basic pseudo-hoops are equiv-
alent to pseudo-BL algebras. Some examples of pseudo-hoops are given
in the last section of the paper.
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Introduction

Hoops are naturally ordered commutative residuated integral monoids, intro-
duced by B. Bosbach in [6, 7], then studied by J.R. Büchi and T.M. Owens in
[8], a paper never published. All information about this paper is taken from
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[1, 3, 4]. In the last years, hoops theory was enriched with deep structure the-
orems (see [4, 15, 2, 3, 5, 1]). Many of these results have a strong impact with
fuzzy logic. Particularly, from the structure theorem of finite basic hoops ([1],
Corollary 2.10) one obtains an elegant short proof of the completeness theorem
for propositional basic logic (see [1], Theorem 3.8), introduced by Hàjek in [21].
The algebraic structures corresponding to Hàjek’s propositional (fuzzy) basic
logic, BL-algebras, are particular cases of hoops. The main example of BL-
algebra is the interval [0, 1] endowed with the structure induced by a t-norm.
MV-algebras, product algebras and Gödel algebras are the most known classes
of BL-algebras. Recent investigations are concerned with non-commutative gen-
eralizations for these structures. Pseudo-MV algebras were introduced as a non-
commutative generalization of MV-algebras (see [18, 19]). Equivalent structures
were defined and studied in [9, 10], under the name of pseudo-Wajsberg alge-
bras. Pseudo-Wajsberg algebras are a non-commutative version of Wajsberg
algebras. A. Dvurecenskij proved in [14] that the category of pseudo-MV alge-
bras is equivalent to the category of l-groups with strong unit. This theorem
extends the fundamental result established by D. Mundici for the commutative
case [22].
In [12, 20], pseudo-BL algebras were defined as a common extension of BL-
algebras and pseudo-MV algebras. The main source of examples of pseudo-BL
algebras is l-group theory. In [16], there was introduced a notion of pseudo-t-
norm in order to recapture some of the properties of pseudo-BL algebras. For
the interval [0, 1], this notion induces some more general algebras named weak
pseudo-BL algebras.
The aim of this paper is to study the pseudo-hoops, structures introduced by
B. Bosbach in [6, 7] under the name of complementary semigroups. Pseudo
BL-algebras will appear as particular cases of pseudo-hoops.
The paper is divided into four sections. In the first section we recall some facts
concerning residuated structures. In Section 2 we study the pseudo-hoops and
we prove their basic properties. Following ideas from [18, 19, 12, 13], in Section
3 we define filters and normal filters, and we prove that the lattice of normal
filters and the lattice of congruences of a pseudo-hoop are isomorphic. In Sec-
tion 4 we investigate some classes of pseudo-hoops, namely, cancellative pseudo-
hoops, Wajsberg pseudo-hoops, basic pseudo-hoops, product pseudo-hoops, and
(strongly) simple pseudo-hoops. The most important of these classes are Wajs-
berg pseudo-hoops and basic pseudo-hoops. We show that bounded Wajsberg
pseudo-hoops are equivalent to pseudo-Wajsberg algebras and that bounded ba-
sic pseudo-hoops are equivalent to pseudo-BL algebras. These facts generalize
results from [4] and [1]. In the last section of the paper we give some examples
of pseudo-hoops and normal filters.
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1 Preliminaries

Firstly, we shall recall some facts about residuated and complemented monoids.
For details see [6, 7, 4, 23]. A structure (A,⊙, 1,≤) is a partially ordered monoid
(po-monoid) if
(i) (A,⊙, 1) is a monoid;
(ii) ≤ is a partial order on A;
(iii) for all a, b, c ∈ A,

a ≤ b implies a ⊙ c ≤ b ⊙ c and c ⊙ a ≤ c ⊙ b.
Assume (A,⊙, 1,≤) is a po-monoid. Then (A,⊙, 1,≤) is integral if a ≤ 1 for all
a ∈ A.
The largest element (under ≤) of the set {c ∈ A | c⊙a ≤ b}, if it exists, is called
the left-residual of a relative to b, and is denoted by a → b. Thus a → b can be
defined by the condition

∀x(x ⊙ a ≤ b ⇔ x ≤ a → b).
(A,⊙, 1,≤) is left-residuated if a → b exists for all a, b ∈ A. In this event the
enriched structure (A,⊙,→, 1,≤) is called a left-residuated po-monoid. A left-
residuated po-monoid can be thought of as an algebra (A,⊙,→, 1), since the
partial order can be retrieved via a ≤ b iff a → b = 1.
The inverse right divisibility relation ≤r on a monoid (A,⊙, 1) is defined by

a ≤r b ⇔ ∃c(a = c ⊙ b).
An algebra (A,⊙,→, 1) is a left-complemented monoid if (A,⊙,→, 1,≤r) is a
po-monoid with left-residuation →.
The notions of right-residual, right-residuated po-monoid, inverse left divisibility
relation ≤l, and right-complemented monoid are defined similarly.

Lemma 1.1 ([4], Lemma 1.3)
(i) If (A,⊙,→, 1) is a left-complemented monoid, then ≤r is a meet-semilattice
order, where a ∧ b = (a → b) ⊙ a for all a, b ∈ A.
(i

′

) If (A,⊙,→, 1) is a right-complemented monoid, then ≤l is a meet-semilattice
order, where a ∧ b = a ⊙ (a → b) for all a, b ∈ A.

Left- (and right-) complemented monoids form a variety and have a simple
equational characterization.

Proposition 1.2 ([7]; [4], Theorem 1.4)
An algebra A = (A,⊙,→, 1, ) is a left-complemented monoid iff the following
identities hold:
(i) a ⊙ 1 = 1 ⊙ a = a;
(ii) a → a = 1;
(iii) (a → b) ⊙ a = (b → a) ⊙ b;
(iv) (a ⊙ b) → c = a → (b → c).

Dually, we get
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Proposition 1.3 An algebra A = (A,⊙,→, 1, ) is a right-complemented monoid
iff the following identities hold:
(i) a ⊙ 1 = 1 ⊙ a = a;
(ii) a → a = 1;
(iii) a ⊙ (a → b) = b ⊙ (b → a);
(iv) (a ⊙ b) → c = b → (a → c).

If the underlying monoid is commutative, the notions of left- and right- comple-
mented monoid coincide. Commutative (left-)complemented monoids are called
hoops by Büchi and Owens in [8].

2 Basic definitions and properties

A pseudo-hoop is an algebra A = (A,⊙,→, ;, 1) with three binary operations
⊙,→, ; and one constant 1 such that:
(i) (A,⊙,→, 1) is a left-complemented monoid;
(i) (A,⊙, ;, 1) is a right-complemented monoid;
(iii) ≤r=≤l.

In the sequel, we shall agree that ⊙ has priority towards the operations →, ;.
Sometimes, for the sake of clarity, we shall put parenthses even if this is not
necessary.
By (iii), the inverse left and right divisibility relations coincide in a pseudo-hoop
and will be denoted simply by ≤. It follows that for any a, b ∈ A,

a ≤ b iff ∃c(a = b ⊙ c) iff ∃c(a = c ⊙ b).
A linear (or totally ordered) pseudo-hoop is a pseudo-hoop with the property
that ≤ is a total order.
A bounded pseudo-hoop is an algebra A = (A,⊙,→, ;, 0, 1) such that (A,⊙,→
, ;, 1) is a pseudo-hoop and 0 ≤ a for all a ∈ A.

We shall denote the set of natural numbers by ω. We define a0 = 1, a
0
→ b =

a
0
; b = b and

an = an−1 ⊙ a, a
n
→ b = a → (a

n−1
→ b), a

n
; b = a ; (a

n−1
; b)

for n ∈ ω − {0}.

In the following propositions, we collect and reformulate some results proved by
B. Bosbach in [6, 7]. For the sake of completeness, we shall include proofs of
these results.

Proposition 2.1 [6, 7] Let A = (A,⊙,→, ;, 1) be a pseudo-hoop.
(i) a ≤ b iff a → b = 1 iff a ; b = 1.
(ii) (A,≤) is a meet-semilattice, with a ∧ b = (a → b) ⊙ a = a ⊙ (a ; b).
(iii) a → a = a ; a = 1;
(iv) (a → b) ⊙ a = (b → a) ⊙ b = a ⊙ (a ; b) = b ⊙ (b ; a);
(v) a ⊙ b → c = a → (b → c) and a ⊙ b ; c = b ; (a ; c).
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Proof: (i) Since ≤=≤r=≤l, we have that (A,⊙,→, 1,≤) is a left-residuated
monoid, hence a ≤ b iff a → b = 1, and (A,⊙, ;, 1,≤) is a right-residuated
monoid, so a ≤ b iff a ; b = 1.
(ii) By Lemma 1.1.
(iii) By Propositions 1.2(ii) and 1.3(ii).
(iv) By (ii) and the fact that a ∧ b = b ∧ a.
(iv) By Propositions 1.2(iv) and 1.3(iv). 2

Theorem 2.2 [6, 7] An algebra A = (A,⊙,→, ;, 1) of type (2, 2, 2, 0) is a
pseudo-hoop iff the following identities hold:
(A0) a ⊙ 1 = 1 ⊙ a = a;
(A1) a → a = a ; a = 1;
(A2) a ⊙ b → c = a → (b → c);
(A3) a ⊙ b ; c = b ; (a ; c) and ;
(A4) (a → b) ⊙ a = (b → a) ⊙ b = a ⊙ (a ; b) = b ⊙ (b ; a).

Proof: By the above proposition, the identities (A0)-(A4) hold in any pseudo-
hoop. Conversely, suppose that A = (A,⊙,→, ;, 1) satisfies (A0)-(A4). By
Propositions 1.2 and 1.3, we get that (A,⊙,→, 1) is a left-complemented monoid
and (A,⊙, ;, 1) is a right-complemented monoid. Use Lemma 1.1 and (A4) to
get that ≤3=≤l. Hence, A is a pseudo-hoop. 2

From the above theorem it follows that pseudo-hoops form a variety. We shall
denote by PH this variety.

Remark 2.3 [6, 7] Let A = (A,⊙,→, ;, 1) be a pseudo-hoop. Then ⊙ is
commutative iff →=;. In this case, A is a hoop.

Proof: If ⊙ is commutative, then for any a, b, c ∈ A we have that c ≤ a → b iff
c⊙ a ≤ b iff a⊙ c ≤ b iff c ≤ a ; b. Hence, a → b = a ; b. Conversely, suppose
that →=; and let a, b ∈ A. Then for any c ∈ A, a ⊙ b ≤ c iff a ≤ b → c iff
a ≤ b ; c iff b ⊙ a ≤ c. That is, a ⊙ b = b ⊙ a.
We get that (A,⊙,→, 1) is a commutative left-complemented monoid, that is a
hoop. 2

In the sequel we shall prove some properties of pseudo-hoops.

Lemma 2.4 [6, 7] Let A = (A,⊙,→, ;, 1) be a pseudo-hoop. For any a, b, c ∈
A, the following hold:
(1) c ⊙ a ≤ b iff c ≤ a → b;
(2) a ⊙ c ≤ b iff c ≤ a ; b;
(3) 1 → a = 1 ; a = a;
(4) a → 1 = a ; 1 = 1;
(5) a → b ≤ (c → a) → (c → b);
(6) a ; b ≤ (c ; a) ; (c ; b);

(7) for any n ∈ ω, a
n
→ b = an → b and a

n
; b = an

; b.
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Proof: (1)-(2) By the fact that → is left-residuation and ; is right-residuation.
(3)-(6) See [4], Lemma 1.5 and its dual.
(7) see [4], pag. 554. 2

Lemma 2.5 [6, 7] Let A = (A,⊙,→, ;, 1) be a pseudo-hoop. For any a, b, c ∈
A,
(8) a ⊙ b ≤ a, b;
(9) a ≤ b → a and a ≤ b ; a;
(10) a ≤ b implies a ⊙ c ≤ b ⊙ c and c ⊙ a ≤ c ⊙ b;
(11) a ⊙ b ≤ a ∧ b;
(12) a ≤ b implies c → a ≤ c → b and c ; a ≤ c ; b;
(13) a ≤ b implies b → c ≤ a → c and b ; c ≤ a ; c;
(14) (b → c) ⊙ (a → b) ≤ a → c;
(15) (a ; b) ⊙ (b ; c) ≤ a ; c;
(16) a → b ≤ (b → c) ; (a → c);
(17) a ; b ≤ (b ; c) → (a ; c);
(18) a → b ≤ (a ⊙ c) → (b ⊙ c);
(19) a ; b ≤ (c ⊙ a) ; (c ⊙ b).

Proof: (8) By (A3), (A1) and (4), a ⊙ b ; a = b ; (a ; a) = b ; 1 = 1.
Similarly, applying (A2), (A1) and (4), a ⊙ b → b = a → (b → b) = a → 1 = 1.
Apply now Proposition 2.1(i) to get that a ⊙ b ≤ a and a ⊙ b ≤ b.
(9) Apply (8) and (1), respectively (2).
(10) Since a ≤ b, there are x, y ∈ A such that a = x ⊙ b and a = b ⊙ y. It
follows that a⊙ c = x⊙ (b⊙ c) and c⊙ a = (c⊙ b)⊙ y, hence a⊙ c ≤ b⊙ c and
c ⊙ a ≤ c ⊙ b.
(11) We have that a ∧ b = (a → b) ⊙ a, by Proposition 2.1(ii), and b ≤ a → b,
by (9). Applying (10), we get that a ⊙ b ≤ a ⊙ (a → b) = a ∧ b.
(12) Apply (5), (6), and the fact that a ≤ b iff a → b = a ; b = 1.
(13) Suppose that a ≤ b. By (10), it follows that (b → c) ⊙ a ≤ (b → c) ⊙ b =
b ∧ c ≤ c. Apply now (1) to get that b → c ≤ a → c. Similarly, a ⊙ (b ; c) ≤
b ⊙ (b ; c) = b ∧ c ≤ c, so b ; c ≤ a ; c, by (2).
(14) Apply (5) to get that b → c ≤ (a → b) → (a → c), and (1) to obtain
(b → c) ⊙ (a → b) ≤ a → c.
(15) Similarly, applying (6) and (2).
(16) By (14) and (2).
(17) By (15) and (1).
(18) Applying (1) and the fact that a ∧ b = (a → b) ⊙ a, we get that a → b ≤
(a ⊙ c) → (b ⊙ c) iff (a → b)⊙ a ⊙ c ≤ b ⊙ c iff (a ∧ b)⊙ c ≤ b ⊙ c, which is true
by (10).
(19) Applying (2) and the fact that a ∧ b = a ⊙ (a ; b), we have that a ; b ≤
(c ⊙ a) ; (c ⊙ b) iff c⊙ a⊙ (a ; b) ≤ c ⊙ b iff c ⊙ (a ∧ b) ≤ c⊙ b, which is true
by (10). 2

Lemma 2.6 Let A be a pseudo-hoop and I an arbitrary set. Then
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(20) b →
∧

i∈I ai =
∧

i∈I(b → ai);
(21) b ;

∧

i∈I ai =
∧

i∈I(y → ai),
whenever the arbitrary meets exist.

Proof: (20) For any x ∈ A we have the following equivalences:
x ≤ b →

∧

i∈I ai iff x ⊙ b ≤
∧

i∈I ai iff x ⊙ b ≤ ai, for any i ∈ I iff x ≤ b → ai,
for any i ∈ I iff x ≤

∧

i∈I(b → ai).
(21) Similarly. 2

Lemma 2.7 Let A be a pseudo-hoop. For any a, b, c, d ∈ A,
(22) (a → b) ⊙ (c → d) ≤ (a ∧ c) → (b ∧ d);
(23) (a ; b) ⊙ (c ; d) ≤ (a ∧ c) ; (b ∧ d);

Proof: (22) By (13), we have that a → b ≤ (a∧c) → b and c → d ≤ (a∧c) → d.
Hence, by (10) and (11), (a → b) ⊙ (c → d) ≤ ((a ∧ c) → b) ⊙ ((a ∧ c) → d) ≤
((a∧c) → b)∧((a∧c) → d). Applying (20), we get that ((a∧c) → b)∧((a∧c) →
d) = (a ∧ c) → (b ∧ d).
(23) Similarly. 2

The following result extends Lemma 2.1 from [1].

Proposition 2.8 Let A be a pseudo-hoop and a, b, c ∈ A. Suppose that a ∨ b
exists. Then
(i) (a ∨ b) → c = (a → c) ∧ (b → c);
(i

′

) (a ∨ b) ; c = (a ; c) ∧ (b ; c);
(ii) for any n ∈ ω − {0},

(a ∨ b)n → c =
∧

{(xn ⊙ . . . ⊙ x1) → c | xi ∈ {a, b}};
(ii

′

) for any n ∈ ω − {0},
(a ∨ b)n

; c =
∧

{(x1 ⊙ . . . ⊙ xn) ; c | xi ∈ {a, b}}.

Proof: (i) Since a, b ≤ a ∨ b, by (13) we get that (a ∨ b) → c ≤ a → c and
(a∨b) → c ≤ b → c, so (a∨b) → c ≤ (a → c)∧(b → c). If x ≤ (a → c)∧(b → c),
then x ≤ a → c and x ≤ b → c, so x ⊙ a ≤ c and x ⊙ b ≤ c, hence a, b ≤ x ; c.
But this implies a ∨ b ≤ x ; c, that is x ⊙ (a ∨ b) ≤ c, so x ≤ (a ∨ b) → c. We
have got that x ≤ (a → c) ∧ (b → c) implies x ≤ (a ∨ b) → c. It follows that
(a → c) ∧ (b → c) ≤ (a ∨ b) → c.
(i

′

) Similarly.
(ii) For n = 1, we get (i). Assume that the equality holds for n. Then

(a ∨ b)n+1 → c = (a ∨ b) ⊙ (a ∨ b)n → c
(A2)
= (a ∨ b) → ((a ∨ b)n → c) =

(a ∨ b) →
∧

{(xn ⊙ . . . ⊙ x1) → c | xi ∈ {a, b}}
(i)
= (a →

∧

{(xn ⊙ . . . ⊙ x1) →

c | xi ∈ {a, b}}) ∧ (b →
∧

{(xn ⊙ . . . ⊙ x1) → c | xi ∈ {a, b}})
(20)
=

∧

{a →
((xn ⊙ . . . ⊙ x1) → c) | xi ∈ {a, b}} ∧

∧

{b → ((xn ⊙ . . . ⊙ x1) → c) | xi ∈

{a, b}}
(A2)
=

∧

{(a ⊙ xn ⊙ . . . ⊙ x1) → c | xi ∈ {a, b}} ∧
∧

{(b ⊙ xn ⊙ . . . ⊙ x1) →
c | xi ∈ {a, b}} =

∧

{(xn+1 ⊙ xn ⊙ . . . ⊙ x1) → c | xi ∈ {a, b}}.
(ii

′

) Similarly. 2
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Lemma 2.9 Let A be a pseudo-hoop and I an arbitrary set. Then
(i) a ⊙ (

∨

i∈I bi) =
∨

i∈I(a ⊙ bi);

(i
′

) (
∨

i∈I bi) ⊙ a =
∨

i∈I(bi ⊙ a);
(ii) a ∧ (

∨

i∈I bi) =
∨

i∈I(a ∧ bi),
whenever the arbitrary unions exist.

Proof: (i) We have that bi ≤
∨

i∈I bi for any i ∈ I, so a ⊙ bi ≤ a ⊙ (
∨

i∈I bi)
for any i ∈ I, hence

∨

i∈I(a ⊙ bi) ≤ a ⊙ (
∨

i∈I bi). For any x ∈ A, we get
that

∨

i∈I(a ⊙ bi) ≤ x implies a ⊙ bi ≤ x for any i ∈ I, so bi ≤ a ; x for
any i ∈ I. Thus, we obtain that

∨

i∈I bi ≤ a ; x, hence a ⊙ (
∨

i∈I bi) ≤ x.
We have got that

∨

i∈I(a ⊙ bi) ≤ x implies a ⊙ (
∨

i∈I bi) ≤ x. It follows that
a ⊙ (

∨

i∈I bi) ≤
∨

i∈I(a ⊙ bi).

(i
′

) Similarly.
(ii) The inequality

∨

i∈I(a∧ bi) ≤ a∧ (
∨

i∈I bi) is obvious. Let us now prove the
converse inequality. We have that a ∧ (

∨

i∈I bi) = (
∨

i∈I bi) ∧ a = (
∨

i∈I bi) ⊙

(
∨

i∈I bi ; a) =
∨

i∈I(bi ⊙ (
∨

i∈I bi ; a)), by (i
′

). Applying (13), we get that
∨

i∈I bi ; a ≤ bi ; a for any i ∈ I, so bi ⊙ (
∨

i∈I bi ; a) ≤ bi ⊙ (bi ; a) =
bi∧a = a∧bi for any i ∈ I. It follows that

∨

i∈I(bi⊙(
∨

i∈I bi ; a)) ≤
∨

i∈I(a∧bi).
2

Lemma 2.10 Let A be a pseudo-hoop. For any a, b ∈ A,
(24) a ≤ (a → b) ; b;
(25) a ≤ (a → b) ; a;
(26) a ≤ (a ; b) → b;
(27) a ≤ (a ; b) → a;
(28) b → ((a → b) ; a) = b → a;
(29) b ; ((a ; b) → a) = b ; a;
(30) ((b → a) ; a) → a = b → a;
(31) ((b ; a) → a) ; a = b ; a;
(32) [((b → a) ; a) → b] → (b → a) = b → a;
(33) [((b ; a) → a) ; b] ; (b ; a) = b ; a.

Proof: (24)-(25) From (a → b) ⊙ a = a ∧ b ≤ a, b and (2) we obtain that
a ≤ (a → b) ; b and a ≤ (a → b) ; a.
(26)-(27) Similarly, a ⊙ (a ; b) = a ∧ b ≤ a, b, so a ≤ (a ; b) → b and
a ≤ (a ; b) → a, by (1).
(28) Let us denote (a → b) ; a by x. We have to prove that b → x = b → a.
By (25), we have that a ≤ x. Hence, applying (12) we get that b → a ≤ b → x.
From a ≤ x and (13) we obtain that x → b ≤ a → b and, by (24), a → b ≤
((a → b) ; a) → a = x → a. Thus, we have got that x → b ≤ x → a. It follows
that (b → x) ⊙ b = b ∧ x = x ∧ b = (x → b) ⊙ x ≤ (x → a) ⊙ x = x ∧ a ≤ a,
hence b → x ≤ b → a, by (1).
(29) Similarly.
(30) By (26), b → a ≤ ((b → a) ; a) → a. From (24) we get that b ≤ (b →
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a) ; a, and applying (13), it follows that ((b → a) ; a) → a ≤ b → a.
(31) Similarly.
(32) Let x = (b → a) ; a. By (24) and (30), we have that b ≤ x and
x → a = b → a. It follows that (x → b) → (b → a) = (x → b) → (x → a) =
(x → b) ⊙ x → a = (x ∧ b) → a = b → a.
(33) Similarly. 2

Remember that on any hoop A one can define a pseudo-join operation
.
∨ (see

[1]) by
a

.
∨ b = ((a → b) → b) ∧ ((b → a) → a), for all a, b ∈ A.

Following this idea, we define on a pseudo-hoop A two binary operations that
are almost a join operation. If a, b ∈ A, then the pseudo-joins of a and b are

a ∨1 b = ((a → b) ; b) ∧ ((b → a) ; a),
a ∨2 b = ((a ; b) → b) ∧ ((b ; a) → a).

Proposition 2.11 Let A be a pseudo-hoop. For any a, b ∈ A,
(i) a ∨1 b = b ∨1 a and a ∨2 b = b ∨2 a;
(ii) a, b ≤ a ∨1 b and a, b ≤ a ∨2 b;
(iii) a ≤ b iff a ∨1 b = b;
(iii

′

) a ≤ b iff a ∨2 b = b.

Proof: (i) is obvious.
(ii) By (24), we have that a ≤ (a → b) ; b and by (9), a ≤ (b → a) ; a.
Hence, a ≤ a ∨1 b. Similarly, applying (26) and (9), we get that a ≤ a ∨2 b.
(iii) If a ≤ b, then (a → b) ; b = 1 ; b = b, by (3). Hence, a ∨1 b = b ∧ [(b →
a) ; a] = b, since b ≤ (b → a) ; a, by (24). Conversely, suppose that a∨1b = b.
It follows that a ∧ b = a ∧ (a ∨1 b) = a, by (ii). That is, a ≤ b.
(iii

′

) Similarly. 2

Proposition 2.12 Let A be a pseudo-hoop. The following are equivalent:
(i) ∨1 is associative;
(ii) for all a, b, c ∈ A, a ≤ b implies a ∨1 c ≤ b ∨1 c;
(iii) for all a, b, c ∈ A, a ∨1 (b ∧ c) ≤ (a ∨1 b) ∧ (a ∨1 c);
(iv) ∨1 is the join operation on A.

Proof: Similar to the proof of Proposition 2.4 from [1]. 2

Dually, we get

Proposition 2.13 Let A be a pseudo-hoop. The following are equivalent:
(i) ∨2 is associative;
(ii) for all a, b, c ∈ A, a ≤ b implies a ∨2 c ≤ b ∨2 c;
(iii) for all a, b, c ∈ A, a ∨2 (b ∧ c) ≤ (a ∨2 b) ∧ (a ∨2 c);
(iv) ∨2 is the join operation on A.

Remark 2.14 Suppose that ∨1(respectively ∨2) is associative. By Proposition
2.12, we get that ∨1(respectively ∨2) is the join operation on A. Applying
Lemma 2.9(iii), it follows that (A,∧,∨) is a distributive lattice.
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Proposition 2.15 Let A be a pseudo-hoop and a, b, c ∈ A. Then
(i) if a ∨ b = 1, then a ⊙ b = a ∧ b;
(ii) if a ∨ b = 1 and a ≤ c, b ≤ d, then c ∨ d = 1;
(iii) if a ∨ b = 1, then an ∨ bn = 1 for all n ∈ ω − {0}.

Proof: (i) By (9), a ⊙ b ≤ a ∧ b. Since, by Lemma 2.11(ii) we have that
a, b ≤ a∨1 b, it follows that a∨1 b = 1, that is ((a → b) ; b)∧((b → a) ; a) = 1,
hence (a → b) ; b = (b → a) ; a = 1. It follows that b → a ≤ a, so
a ∧ b = (b → a) ⊙ b ≤ a ⊙ b.
(ii) Of course, c, d ≤ 1. Let x ∈ A such that c, d ≤ x. It follows that a, b ≤ x,
so 1 = a ∨ b ≤ x. That is, x = 1.
(iii) We follow the proof of Lemma 2.16 from [12]. Suppose that a ∨ b = 1.
By Lemma 2.9(i), it follows that a = a ⊙ 1 = a ⊙ (a ∨ b) = a2 ∨ (a ⊙ b), so
1 = a ∨ b = a2 ∨ (a ⊙ b) ∨ b = a2 ∨ b. Similarly, we get that b = b ⊙ 1 =
b ⊙ (a2 ∨ b) = (b ⊙ a2) ∨ b2. Hence, a2 ∨ b2 = a2 ∨ (b ⊙ a2) ∨ b2 = a2 ∨ b = 1.
We prove in the same manner that a2n

∨ b2n

= 1 for all n ∈ ω − {0}. Since
a2n

≤ an, b2n

≤ bn, it follows that an ∨ bn = 1. 2

3 Filters and congruences

In this section we study the filters and the congruences of a pseudo-hoop. Fol-
lowing some ideas from [18, 19, 12, 13], we shall define the notion of normal filter
and we shall establish an isomorphism between the lattice of normal filters and
the lattice of congruences of a pseudo-hoop. The results obtained in this section
generalize the similar results for pseudo-MV algebras [18, 19] and pseudo-BL
algebras [12, 13].

Let A = (A,⊙,→, ;, 1) a pseudo-hoop. A non-empty subset F of A is a filter
of A if for all a, b ∈ A,
(i) a, b ∈ F implies a ⊙ b ∈ F ;
(ii) a ∈ F and a ≤ b imply b ∈ F .
By (11), it is obvious that any filter of A is also a filter of the meet-semilattice
(A,∧).
A filter F of A is proper iff F 6= A. A maximal filter (or ultrafilter) is a proper
filter U of A that is not included in any other proper filter.

Proposition 3.1 For a subset F of A the following are equivalent:
(i) F is a filter;
(ii) 1 ∈ F and if a, a → b ∈ F , then b ∈ F ;
(iii) 1 ∈ F and if a, a ; b ∈ F , then b ∈ F .

Proof: See [4], Theorem 1.6 and its dual. 2

It follows that any filter of A is a also a subuniverse of A.
If X ⊆ A, we denote by < X > the filter generated by X in A. A description
of < X > is easily obtained:
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Proposition 3.2 Let A be a pseudo-hoop and X ⊆ A. Then
< X >= {a ∈ A | x1 ⊙ x2 ⊙ . . .⊙ xn ≤ b for some n ∈ ω −{0} and x1, . . . , xn ∈
X}

= {a ∈ A | x1 → (x2 → (. . . → (xn → a) . . .)) = 1 for some n ∈ ω −
{0} and x1, . . . , xn ∈ X}

= {a ∈ A | x1 ; (x2 ; (. . . ; (xn ; a) . . .)) = 1 for some n ∈ ω −
{0} and x1, . . . , xn ∈ X}
In particular the principal filter generated by an element x ∈ A is

< x >= {a ∈ A | xn ≤ a for some n ∈ ω − {0}} = {a ∈ A | x
n
→ a =

1 for some n ∈ ω − {0}} = {a ∈ A | x
n
; a = 1 for some n ∈ ω − {0}}

Remark 3.3 Let A be a pseudo-hoop and F be a proper filter of A. The
following conditions are equivalent:
(i) F is a maximal filter;
(ii) for all x ∈ A, if x ∈/F then < F ∪ {x} >= A.

Proof: (i)⇒(ii) We have that F ⊆< F ∪ {x} > and F 6=< F ∪ {x} >, since
x ∈/F . From the fact that F is maximal it follows that < F ∪ {x} >= A.
(ii)⇒(i) Suppose that there exists a proper filter G of A such that F ⊆ G and
F 6= G. Then there is x ∈ G \ F . By (ii), we have that < F ∪ {x} >= A. Since
< ∪{x} >⊆ G, it follows that G = A, hence G is not proper. 2

Proposition 3.4 Let A be a pseudo-hoop and a, b ∈ A. If a ∨ b exists, then
< a ∨ b >=< a > ∩ < b >.

Proof: It is obvious that a ∈< a > and b ∈< b >. Since a, b ≤ a ∨ b, it
follows that a ∨ b ∈< a > and a ∨ b ∈< b >, so a ∨ b ∈< a > ∩ < b >. Hence,
< a∨ b >⊆< a > ∩ < b >. Conversely, let c ∈< a > ∩ < b >. Then an ≤ c and
bm ≤ c for some n, m ∈ ω − {0}. By Proposition 2.8(ii

′

), we get that
(a ∨ b)n+m

; c =
∧

{(x1 ⊙ . . . ⊙ xn+m) ; c | xi ∈ {a, b}}.
Consider x1, . . . , xn+m ∈ {a, b}. Denote by r the number of occurences of
a in the sequence x1, . . . , xn+m and by s the number of occurences of b in
the sequence x1, . . . , xn+m. Of course, r + s = n + m. We have that x1 ⊙
. . . ⊙ xn+m ≤ ar and x1 ⊙ . . . ⊙ xn+m ≤ bs. Applying (13), it follows that
ar

; c ≤ (x1 ⊙ . . .⊙ xn+m) ; c and bs
; c ≤ (x1 ⊙ . . .⊙ xn+m) ; c. If r ≤ n,

then s ≥ m, so bs ≤ bm. Applying again (13), we get that bs
; c ≥ bm

; c = 1,
since bm ≤ c. Hence, bs

; c = 1, so x1⊙. . .⊙xn+m ; c = 1. Similarly, if r > n,
then ar ≤ an, so ar

; c ≥ an
; c = 1, since an ≤ c. It follows that ar

; c = 1,
hence (x1 ⊙ . . . ⊙ xn+m) ; c = 1. Therefore, (x1 ⊙ . . . ⊙ xn+m) ; c = 1 for
any x1, . . . , xn+m ∈ {a, b}, hence (a ∨ b)n+m

; c = 1. Thus (a ∨ b)n+m ≤ c, so
c ∈< a ∨ b >. 2

In a pseudo-BL algebra, one can introduce two distance functions in order to
study the filters (see [12]). If A is a pseudo-hoop, then we define four distance
functions:
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d1(a, b) = (a → b) ⊙ (b → a), d2(a, b) = (a ; b) ⊙ (b ; a),
d3(a, b) = (b → a) ⊙ (a → b), d4(a, b) = (b ; a) ⊙ (a ; b).

Lemma 3.5 For any a, b ∈ A and any i ∈ {1, 2, 3, 4},
(i) di(a, b) = 1 iff a = b;
(ii) di(a, a) = 1;
(iii) di(a, 1) = a;
(iv) if i ∈ {1, 3}, then di(b, c) ⊙ di(a, b) ⊙ di(b, c) ≤ di(a, c);
(v) if i ∈ {2, 4}, then di(a, b) ⊙ di(b, c) ⊙ di(a, b) ≤ di(a, c).

Proof: We shall prove the properties for i = 1, the other cases following
similarly.
(i) We have that d1(a, b) = 1 iff a → b = b → a = 1 iff a ≤ b and b ≤ a iff a = b.
(ii) By (A1), d1(a, a) = (a → a) ⊙ (a → a) = 1 ⊙ 1 = 1.
(iii) By (3), (4) and (A0), d1(a, 1) = (a → 1) ⊙ (1 → a) = 1 ⊙ a = a.
(iv) We have that d1(b, c) ⊙ d1(a, b) ⊙ d1(b, c) = (b → c) ⊙ (c → b) ⊙ (a →
b)⊙ (b → a)⊙ (b → c)⊙ (c → b) = x⊙ y, where x = (b → c)⊙ (c → b)⊙ (a → b)
and y = (b → a) ⊙ (b → c) ⊙ (c → b). By (8) and (14), we get that x ≤ (b →
c)⊙ (a → b) ≤ a → c and y ≤ (b → a)⊙ (c → b) ≤ c → a. Hence, applying (10)
we get that x ⊙ y ≤ d1(a, c).
(v) Similarly, applying (8) and (15). 2

Let F be a filter of A. We define two binary relations on A by:

a ≡R(F ) b
def
⇔ d1(a, b) ∈ F and a ≡L(F ) b

def
⇔ d2(a, b) ∈ F .

We remark that for any a, b ∈ A,
a ≡R(F ) b iff a → b, b → a ∈ F iff d3(a, b) ∈ F , and
a ≡L(F ) b iff a ; b, b ; a ∈ F iff d4(a, b) ∈ F .

Proposition 3.6 Let A be a pseudo-hoop. For a given filter F of A, the
relations ≡R(F ) and ≡L(F ) are equivalence relations on A.

Proof: Let us prove that ≡R(F ) is an equivalence relation on A. By Lemma
3.5(ii), d1(a, a) = 1 ∈ F , hence a ≡R(F ) a for any a ∈ A. It is obvious that
≡R(F ) is symmetric. It remains to prove the transitivity of ≡R(F ). Suppose
that a ≡R(F ) b and b ≡R(F ) c for some a, b, c ∈ A. Hence, d1(a, b), d1(b, c) ∈ F .
By Lemma 3.5(iv), d1(b, c) ⊙ d1(a, b) ⊙ d1(b, c) ≤ d1(a, c), hence d1(a, c) ∈ F .
That is, a ≡R(F ) c. We prove similarly that ≡L(F ) is an equivalence relation on
A. 2

Lemma 3.7 F = {a ∈ A | a ≡R(F ) 1} = {a ∈ A | a ≡L(F ) 1}.

Proof: We have that a ≡R(F ) 1 iff d1(a, 1) ∈ F iff a ∈ F , since d1(a, 1) = a.
Similarly, a ≡L(F ) 1 iff d2(a, 1) ∈ F iff a ∈ F , since d2(a, 1) = a. 2

Proposition 3.8 Let F be a filter of A. Then for all a, b ∈ A,
(i) a ≡R(F ) b iff x ⊙ a = y ⊙ b for some x, y ∈ F ;

(i
′

) a ≡L(F ) b iff a ⊙ x = b ⊙ y for some x, y ∈ F .
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Proof: (i) Suppose that x ⊙ a = y ⊙ b, for some x, y ∈ F . By (A2), we
get that y → (b → a) = (y ⊙ b) → a = (x ⊙ a) → x = 1, since x ⊙ a ≤ x.
It follows that y ≤ b → a, hence b → a ∈ F , since y ∈ F . Similarly,
we get that x → (a → b) = 1, hence a → b ∈ F . We have got that
a → b, b → a ∈ F , that is a ≡R(F ) b. Conversely, suppose that a ≡R(F ) b,
hence a → b, b → a ∈ F . Let x = a → b and y = b → a. We have that x, y ∈ F
and x ⊙ a = (a → b) ⊙ a = a ∧ b = b ∧ a = (b → a) ⊙ b = y ⊙ b.
(i

′

) Similarly. 2

Let us denote by A/R(F ) (A/L(F ), respectively) the quotient set associated
with ≡R(F ) (≡L(F ), respectively). For any a ∈ A, a/R(F ) (a/L(F ), respec-
tively) will denote the equivalence class of a with respect to ≡R(F ) (≡L(F ),
respectively).

Lemma 3.9 Let F be a filter of A. Then for all a, b, c, d ∈ A,
(i) if a ≡R(F ) b and c ≡R(F ) d, then a → c ∈ F iff b → d ∈ F ;

(i
′

) if a ≡L(F ) b and c ≡L(F ) d, then a ; c ∈ F iff b ; d ∈ F .

Proof: (i) We have that a → b, b → a, c → d, d → c ∈ F . By (14), we
get that (c → d) ⊙ (a → c) ⊙ (b → a) ≤ (a → d) ⊙ (b → a) ≤ b → d and
(d → c) ⊙ (b → d) ⊙ (a → b) ≤ (b → c) ⊙ (a → b) ≤ a → c. From the fact that
F is filter, it follows that a → c ∈ F iff b → d ∈ F .
(i

′

) Similarly. 2

The previous lemma allows us to define the binary relation ≤R(F ) on A/R(F )
by:

a/R(F ) ≤R(F ) b/R(F )
def
⇔ a → b ∈ F .

It is straightforward to prove that ≤R(F ) is an order relation on A/R(F ). Sim-
ilarly, we define an order relation ≤L(F ) on A/L(F ) by:

a/L(F ) ≤L(F ) b/L(F )
def
⇔ a ; b ∈ F .

In the sequel, we shall introduce normal filters in order to characterize the
congruences of a pseudo-hoop A.
A filter H of A is called normal if for every a, b ∈ A we have the equivalence:

(N) a → b ∈ H iff a ; b ∈ H.

We remark that {1} and A are normal filters of the pseudo-hoop A.
For a filter F of A and a ∈ A let us denote

a ⊙ F = {a⊙ x | x ∈ F}, F ⊙ a = {x ⊙ a | x ∈ F}.

Proposition 3.10 Let H be a a filter of A. The following are equivalent:
(i) H is a normal filter;
(ii) a ⊙ H = H ⊙ a for any a ∈ A;
(iii) ≡R(H) = ≡L(H).

Proof: (i)⇒(ii). Let a ∈ A and y = a ⊙ x ∈ a ⊙ H . It follows that y =
a ∧ y = (a → y) ⊙ a, since y = a ⊙ x ≤ a. By (A3) and (A1), we have that
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x ; (a ; y) = (a ⊙ x) ; (a ⊙ x) = 1, so x ≤ a ; y, hence a ; y ∈ H , since
x ∈ H . From (N) we get that a → y ∈ H . Thua, y = (a → y) ⊙ a ∈ H ⊙ a.
Hence, a ⊙ H ⊆ H ⊙ a. We prove similarly that H ⊙ a ⊆ a ⊙ H .
(ii)⇒(iii) Let a, b ∈ A such that a ≡R(H) b. By Proposition 3.8(i), there are
x, y ∈ H such that x ⊙ a = y ⊙ b. Applying now (ii), there are z, t ∈ H such
that x ⊙ a = a ⊙ z and y ⊙ b = b ⊙ t. Hence, a ⊙ z = b ⊙ t for some z, t ∈ H .
Applying Proposition 3.8(i

′

), we obtain that a ≡L(H) b. Similarly, a ≡L(H) b
implies a ≡R(H) b.
(iii)⇒(i) Let a, b ∈ A. By (20) and (A1), we get that a → a∧b = (a → a)∧(a →
b) = 1 ∧ (a → b) = a → b, hence d1(a, a ∧ b) = (a → a ∧ b) ⊙ (a ∧ b → a) =
(a → a ∧ b) ⊙ 1 = a → a ∧ b = a → b. Similarly, using (21) we obtain that
d2(a, a∧b) = a ; b. Applying (ii), it follows that a → b ∈ H iff d1(a, a∧b) ∈ H
iff a ≡R(H) a ∧ b iff a ≡L(H) a ∧ b iff d2(a, a ∧ b) ∈ H iff a ; b ∈ H . 2

Lemma 3.11 Let H be a normal filter of A and x ∈ A. Then
< H ∪ {x} >= {a ∈ A | h ⊙ xn ≤ a, for some n ∈ ω, h ∈ H} = {a ∈ A |

xn ⊙ h ≤ a, for some n ∈ ω, h ∈ H}.

Proof: By Proposition 3.2, we have that
< H ∪ {x} >= {a ∈ A | (h1 ⊙ xn1) ⊙ (h2 ⊙ xn2) ⊙ . . . ⊙ (hk ⊙ xnk) ≤

a for some k ∈ ω − {0}, h1, . . . , hn ∈ H, n1, . . . , nk ∈ ω}.
If k = 1, then we get h1 ⊙ xn1 ≤ a.
If k = 2, then a ≥ (h1 ⊙ xn1) ⊙ (h2 ⊙ xn2 ) = h1 ⊙ (xn1 ⊙ h2) ⊙ xn2 . Since H
is normal, it follows that xn1 ⊙ h2 ∈ xn1 ⊙ H = H ⊙ xn1 , so there is h3 ∈ H
such that xn1 ⊙ h2 = h3 ⊙ xn1 . We get that a ≥ h1 ⊙ (xn1 ⊙ h2) ⊙ xn2 =
(h1 ⊙ h3) ⊙ (xn1 ⊙ xn2) = h ⊙ xn, where h = h1 ⊙ h3 ∈ H and n = n1 + n2.
Applying repeatedly this procedure we obtain the intended result. 2

Proposition 3.12 Let A be a pseudo-hoop and H be a proper normal filter of
A. The following conditions are equivalent:
(i) H is a maximal filter;
(ii) for all x ∈ A, if x ∈/H then for any a ∈ A, xn → a ∈ F for some n ∈ ω;
(ii

′

) for all x ∈ A, if x ∈/H then for any a ∈ A, xn
; a ∈ F for some n ∈ ω.

Proof: (i)⇒(ii) Let x ∈ A such that x ∈/H . By Remark 3.3, we have that
< H ∪ {x} >= A. Applying Lemma 3.11, we get that for all a ∈ A there is
n ∈ ω and h ∈ H such that h ⊙ xn ≤ a, so h ≤ xn → a. Since H is a filter of
A, it follows that xn → a ∈ H .
(ii)⇒(i) Let x ∈ A such that x ∈/H . For any a ∈ A, there is n ∈ ω such that
xn → a ∈ H . We get that (xn → a) ⊙ xn = xn ∧ a ≤ a, so a ∈< H ∪ {x} >, by
Lemma 3.11. Hence, < H ∪ {x} >= A. Apply now Remark 3.3 to obtain that
H is maximal.
(ii

′

)⇔(i) Similarly. 2

By Proposition 3.10, if H is a normal filter of A, then ≡R(H) and ≡L(H) coincide.
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We shall denote by ≡H this equivalence relation and by a/H the equivalence
class of a ∈ A.

Proposition 3.13 Let H be a a normal filter of A. Then ≡H is a congruence
on A.

Proof: Suppose that a ≡H b and c ≡H d. By Proposition 3.8(i), there are
x, y ∈ A such that x⊙ a = y ⊙ b. It follows that x⊙ (a⊙ c) = y⊙ (b⊙ c), hence,
applying again Proposition 3.8(i), a ⊙ c ≡H b ⊙ c. Similarly, from c ≡H d and
Proposition 3.8(i

′

) we get that b⊙ c ≡H b⊙ d. Thus, by the transitivity of ≡H ,
a ⊙ c ≡H b ⊙ d.
Let us prove now that a → c ≡H b → d. Firstly, we remark that a → b, b →
a, c → d, d → c ∈ H . By (14), we have that (c → d) ⊙ (a → c) ≤ a → d and
(d → c) ⊙ (a → d) ≤ a → c. Applying now (1), we get that c → d ≤ (a →
c) → (a → d) and d → c ≤ (a → d) → (a → c). Since H is a filter of A, it
follows that (a → c) → (a → d) ∈ H and (a → d) → (a → c) ∈ H . Hence,
a → c ≡H a → d. We prove in the same manner that a → d ≡H b → d. Thus,
a → c ≡H b → d.
The compatibility of ≡H with ; is proved in a similar way. 2

Proposition 3.14 Let ≡ be a congruence on A and H≡ = {a ∈ A | a ≡ 1}.
Then H≡ is a normal filter of A.

Proof: We have that 1 ≡ 1, hence 1 ∈ H≡. Let a ∈ H≡ and b ∈ A such that
a ≤ b, that is a → b = 1. Since a ≡ 1 and ≡ is a congruence on A, we get that
1 = a → b ≡ 1 → b = b, hence b ∈ H≡. If a, b ∈ H≡, then a ≡ 1 and b ≡ 1, so
a⊙ b ≡ 1⊙ 1 = 1, that is a⊙ b ∈ H≡. Thus, we have proved that H≡ is a filter.
Let us prove now that H≡ satisfies condition (N).
Suppose that a → b ∈ H≡, that is a → b ≡ 1. It follows that a ∧ b = (a →
b) ⊙ a ≡ 1 ⊙ a = a, so a ; b ≡ (a ∧ b) ; b = 1, hence a ; b ∈ H≡. We have
got that a → b ∈ H≡ implies a ; b ∈ H≡. We prove similarly that a ; b ∈ H≡

implies a → b ∈ H≡. 2

Proposition 3.15 The map H 7→≡H is an isomorphism between the lattice of
normal filters of A and the lattice of congruences of A. Its inverse is the map
≡ 7→ H≡.

Proof: Firstly, we shall prove that for any normal filter H of A and any
congruence ≡ of A,

≡H≡
=≡ and H≡H

= H .
Let a, b ∈ A such that a ≡ b. It follows that a → b ≡ b → b = 1 and
b → a ≡ b → b = 1, hence a → b, b → a ∈ H≡, that is a ≡H≡

b. Conversely, if
a ≡H≡

b, then a → b ≡ b → a ≡ 1. We get that a∧ b = (a → b)⊙ a ≡ 1⊙ a = a
and a ∧ b = b ∧ a = (b → a) ⊙ b ≡ 1 ⊙ b = b, hence a ≡ b.
Finally, for all a ∈ A, we have that a ∈ H≡H

iff a ≡H 1 iff a → 1, 1 → a ∈ H iff
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a, 1 ∈ H iff a ∈ H .
Thus, we have proved that H 7→≡H is a bijection between the normal filters of
A and the congruences of A. It is obvious that H1 ⊆ H2 iff ≡H1

⊆≡H2
for any

normal filters H1 and H2. 2

Proposition 3.16 The variety of pseudo-hoops is arithmetical.

Proof: Let us consider the following ternary terms: p(x, y, z) = [(x → y) ;

z] ∧ [(z → y) ; x] and M(x, y, z) = [(y → x) ; x] ∧ [(z → y) ; y] ∧ [(x →
z) ; z]. Let A be a pseudo-hoop and a, b ∈ A. It follows that p(a, a, b) = [(a →
a) ; b] ∧ [(b → a) ; a] = (1 ; b) ∧ [(b → a) ; a] = b ∧ [(b → a) ; a] = b
and p(a, b, b) = [(a → b) ; b] ∧ [(b → b) ; a] = [(a → b) ; b] ∧ a = a, since
b ≤ (b → a) ; a and a ≤ (a → b) ; b, by (24). That is, p is a Mal’cev term
for the variety of pseudo-hoops. We also have that M(a, a, b) = [(a → a) ;

a]∧ [(b → a) ; a]∧ [(a → b) ; b] = a∧ [(b → a) ; a]∧ [(a → b) ; b] = a, since
a ≤ (b → a) ; a, by (9), and a ≤ (a → b) ; b, by (24). We prove similarly
that M(a, b, a) = M(b, a, a) = a. Thus, M is a majority term. 2

4 Some classes of pseudo-hoops

Cancellative pseudo-hoops

A pseudo-hoop A = (A,⊙,→, ;, 1) is called cancellative if the monoid (A,⊙, 1)
is cancellative.

Proposition 4.1 A pseudo-hoop A is cancellative iff the following identities
hold:
(C1) b → a ⊙ b = a;
(C2) b ; b ⊙ a = a.

Proof: Suppose that A is cancellative. It follows that a⊙b = b∧(a⊙b) = (b →
a⊙ b)⊙ b, hence a = b → a⊙ b. Similarly, b⊙ a = b∧ (b⊙ a) = b⊙ (b ; b⊙ a),
so a = b ; b ⊙ a.
Conversely, suppose that A satisfies (C1) and (C2). Let a, b, c ∈ A. If a⊙c = b⊙c
then, applying twice (C1) we get that a = c → a⊙ c = c → b⊙ c = b. Similarly,
from c ⊙ a = c ⊙ b and (C2) it follows that a = c ; c ⊙ a = c ; c ⊙ b = b. 2

By the above proposition, it follows that cancellative pseudo-hoops form a va-
riety.

Proposition 4.2 Let A be a cancellative pseudo-hoop. For all a, b, c ∈ A,
(i) c → a = c ⊙ b → a ⊙ b;
(i

′

) c ; a = b ⊙ c ; b ⊙ a;
(ii) a ⊙ b ≤ c ⊙ b iff a ≤ c;
(ii

′

) b ⊙ a ≤ b ⊙ c iff a ≤ c.
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Proof: (i) By (C1) and (A2), we have that c → a = c → (b → a⊙b) = c⊙b →
a ⊙ b.
(i

′

) By (C2) and (A3), we get that c ; a = c ; (b ; b ⊙ a) = b ⊙ c ; b ⊙ a.
(ii) Applying (i), a ⊙ b ≤ c ⊙ b iff a ⊙ b → c ⊙ b = 1 iff a → c = 1 iff a ≤ c.
(ii

′

) Similarly, applying (i
′

). 2

Wajsberg pseudo-hoops

A pseudo-hoop A = (A,⊙,→, ;, 1) is called Wajsberg if it satisfies the following
conditions
(W1) (a → b) ; b = (b → a) ; a;
(W2) (a ; b) → b = (b ; a) → a.

Proposition 4.3 Let A be a Wajsberg pseudo-hoop. Then
(i) a ∨1 b = (a → b) ; b = (b → a) ; a for all a, b ∈ A;
(i

′

) a ∨2 b = (a ; b) → b = (b ; a) → a for all a, b ∈ A;
(ii) ∨1 and ∨2 are associative;
(iii) a ∨ b = a ∨1 b = a ∨2 b for all a, b ∈ A.

Proof: (i) By the definition of ∨1 and (W1).
(i

′

) By the definition of ∨2 and (W2).
(ii) If a ≤ b and c ∈ A, then applying twice (13) we get that b → c ≤ a → c and
(a → c) ; c ≤ (b → c) ; c, that is a ∨1 c ≤ b ∨1 c. By Proposition 2.12, ∨1 is
associative. We prove similarly that ∨2 is associative.
(iii) Apply Remark 2.14. 2

Bounded Wajsberg hoops are termwise definitionally equivalent to Wajsberg
algebras (see [4], Theorem 1.19). A similar result is obtained in the case of
pseudo-hoops.
A pseudo-Wajsberg algebra ([9]) is an algebra A = (A,→, ;,− ,∼ , 1) with two
binary operations →, ;, two unary operations −,∼ and one constant 1 satisfying
the following axioms:
(i) a → a = a ; a = 1;
(ii) (a → b) ; b = (b → a) ; a = (b ; a) → a = (a ; b) → b;
(iii) (a → b) → [(b → c) ; (a → c)] = (a ; b) ; [(b ; c) → (a ; c)] = 1;
(iv) 1− = 1∼;
(v) (a−

; b−) → (b → a) = (a∼ → b∼) → (b ; a) = 1;
(vi) (a → b−)∼ = (b ; a∼)−.
For details about pseudo-Wajsberg algebras see [9, 10].

Proposition 4.4 The variety of bounded Wajsberg pseudo-hoops is termwise
definitionally equivalent to the variety of pseudo-Wajsberg algebras.

Proof: If A = (A,⊙,→, ;, 0, 1) is a bounded Wajsberg pseudo-hoop, then for
all a ∈ A we define a− = a → 0 and a∼ = a ; 0. Then, algebra A∗ = (A,→, ;
,− ,∼ , 1) is a pseudo-Wajsberg algebra. Conversely, if B = (B,→, ;,− ,∼ , 1)
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is a pseudo-Wajsberg algebra, then let 0 = 1− = 1∼ and for all a, b ∈ A,
a ⊙ b = (a → b−)∼ = (b ; a∼)−. Then B◦ = (B,⊙,→, ;, 0, 1) is a bounded
Wajsberg pseudo-hoop. It is easy to prove that for any bounded Wajsberg
pseudo-hoop A and for any pseudo-Wajsberg algebra B, we have that A∗◦ = A
and B◦∗ = B. 2

Basic pseudo-hoops

A pseudo-hoop A = (A,⊙,→, ;, 1) is called basic if it satisfies the following
conditions
(B1) (a → b) → c ≤ ((b → a) → c) → c;
(B2) (a ; b) ; c ≤ ((b ; a) ; c) ; c.

Lemma 4.5 Let A be a basic pseudo-hoop. For any a, b, c ∈ A, the following
hold:
(i) (a → b) ∨1 (b → a) = 1;
(i

′

) (a ; b) ∨2 (b ; a) = 1;
(ii) a → b = (a ∨1 b) → b;
(ii

′

) a ; b = (a ∨2 b) ; b;
(iii) (a ∨1 b) → c = (a → c) ∧ (b → c);
(iii

′

) (a ∨2 b) ; c = (a ; c) ∧ (b ; c).

Proof: (i) Let x = (a → b) ∨1 (b → a). Applying (B1) we get that (a →
b) → x ≤ ((b → a) → x) → x. But, by Proposition 2.11(ii), we have that
(a → b) → x = (b → a) → x = 1, hence 1 ≤ 1 → x = x. That is, x = 1.
(ii) Since a ≤ a ∨1 b, applying (13) we get that (a ∨1 b) → b ≤ a → b. Let us
prove the converse inequality. From (26) and (13) it follows that a → b ≤ ((a →
b) ; b) → b ≤ (a ∨1 b) → b, since a ∨1 b = ((a → b) ; b) ∧ ((b → a) ; a) ≤
(a → b) ; b.
(iii) The inequality (a ∨1 b) → c ≤ (a → c) ∧ (b → c) is obvious, by (13) and
a, b ≤ a ∨1 b. Let x = [(a → c) ∧ (b → c)] ; [(a ∨1 b) → c]. We have to prove
that x = 1. We have that [(a → c)∧ (b → c)]⊙ [(a∨1 b) → b]⊙ (a∨1 b) = [(a →
c) ∧ (b → c)]⊙ [(a ∨1 b) ∧ b] = [(a → c) ∧ (b → c)]⊙ b ≤ (b → c)⊙ b = b ∧ c ≤ c,
so [(a → c) ∧ (b → c)] ⊙ [(a ∨1 b) → b] ≤ (a ∨1 b) → c, hence (a ∨1 b) → b ≤ x.
Applying now (ii), it follows that a → b ≤ x, that is (a → b) → x = 1. We
obtain similarly that (b → a) → x = 1. By (B1), we get that 1 = (a → b) →
x ≤ ((b → a) → x) → x = 1 → x = x, hence x = 1.
(i

′

), (ii
′

) and (iii
′

) are proved similarly. 2

Proposition 4.6 Let A be a basic pseudo-hoop. Then for any a, b ∈ A there
exists a ∨ b and a ∨ b = a ∨1 b = a ∨2 b. The lattice (A,∧,∨) is distributive.

Proof: By Proposition 2.11(ii), we have that a, b ≤ a∨1 b and a, b ≤ a∨2 b. Let
c ∈ A such that a, b ≤ c, that is a → c = b → c = 1. Applying Lemma 4.5(iii),
it follows that (a ∨1 b) → c = (a → c) ∧ (b → c) = 1 ∧ 1 = 1, hence a ∨1 b ≤ c.
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Similarly, applying Lemma 4.5(iii
′

), we obtain that a ∨2 b ≤ c. Thus, we have
proved that a∨ b = a∨1 b = a∨2 b. To get that (A,∧,∨) is a distributive lattice
apply Lemma 2.9(iii). 2

Proposition 4.7 Let A be a pseudo-hoop. The following are equivalent:
(i) A is a basic pseudo-hoop;
(ii) ∨1 and ∨2 are associative and (a → b) ∨1 (b → a) = 1 for all a, b ∈ A;
(iii) ∨1 and ∨2 are associative and (a ; b) ∨2 (b ; a) = 1 for all a, b ∈ A.

Proof: (i)⇒(ii) By Proposition 4.6 and Lemma 4.5(i).
(ii)⇒(i) By Remark 2.14, we have that ∨ = ∨1 = ∨2. Applying (11) and
Proposition 2.8(i), it follows that ((a → b) → c) ⊙ ((b → a) → c) ≤ ((a →
b) → c) ∧ ((b → a) → c) = ((a → b) ∨ (b → a)) → c = 1 → c = c. Hence,
((a → b) → c) ≤ ((b → a) → c) → c, that is (B1). We prove similarly (B2).
(i)⇔(iii) Similarly. 2

Lemma 4.8 Let A be a basic pseudo-hoop. Then for all a, b, c ∈ A,
(i) a ⊙ (b ∧ c) = (a ⊙ b) ∧ (a ⊙ c);
(i

′

) (b ∧ c) ⊙ a = (b ∧ a) ⊙ (c ∧ a);
(ii) (a → b) → (b → a) = b → a;
(ii

′

) (a ; b) ; (b ; a) = b ; a.

Proof: (i) Applying the fact that (A,∧,∨) is distributive, Lemma 4.5(i
′

) and
Lemma 2.9(i

′

), we get that (a⊙b)∧(a⊙c) = [(a⊙b)∧(a⊙c)]⊙1 = [(a⊙b)∧(a⊙
c)]⊙ [(b ; c)∨(c ; b)] = [((a⊙b)∧(a⊙c))⊙(b ; c)]∨ [((a⊙b)∧(a⊙c))⊙(c ;

b)] ≤ [a⊙ b ⊙ (b ; c)] ∨ [a⊙ c⊙ (c ; b)] = a⊙ (b ∧ c). The converse inequality
is obvious.
(i

′

) Similarly.
(ii) By (9), we get that b → a ≤ (a → b) → (b → a). Conversely, we have that
1 = (b → a) ∨ (a → b) = [((b → a) → (a → b)) ; (a → b)] ∧ [((a → b) →
(b → a)) ; (b → a)], hence ((a → b) → (b → a)) ; (b → a) = 1, that is
(a → b) → (b → a) ≤ b → a.
(ii

′

) Similarly. 2

Proposition 4.9 Any Wajsberg pseudo-hoop is a basic pseudo-hoop.

Proof: Let a, b ∈ A. By (32), (W1) and (30), it follows that b → a = [((b →
a) ; a) → b] → (b → a) = [((a → b) ; b) → b] → (b → a) = (a → b) →
(b → a). By Proposition 4.3(i), (a → b) ∨1 (b → a) = ((a → b) → (b → a)) ;

(b → a) = (b → a) ; (b → a) = 1. Since A is Wajsberg, by Proposition 4.3(ii)
we get also that ∨1 and ∨2 are associative. Applying now Proposition 4.7, we
obtain that A is a basic pseudo-hoop. 2

Bounded basic hoops are termwise definitionally equivalent to BL-algebras (see
[1], Theorem 2.6). A similar result is obtained in the case of pseudo-hoops.
A pseudo-BL algebra ([12, 20]) is an algebra (A,∨,∧,⊙,→, ;, 0, 1) with five
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binary operations ∨,∧,⊙,→, ; and two constants 0, 1 such that:
(i) (A,∨,∧, 0, 1) is a bounded lattice;
(ii) (A,⊙, 1) is a monoid;
(iii) a ⊙ b ≤ c iff a ≤ b → c iff b ≤ a ; c;
(iv) a ∧ b = (a → b) ⊙ a = a ⊙ (a ; b);
(v) (a → b) ∨ (b → a) = (a ; b) ∨ (b ; a) = 1.

Proposition 4.10 The variety of bounded basic pseudo-hoops is termwise def-
initionally equivalent to the variety of pseudo-BL algebras.

Proof: If A = (A,⊙,→, ;, 0, 1) is a bounded basic pseudo-hoop, then for all
a, b ∈ A we can define a∧b and a∨b. Then, algebra A∗ = (A,∧,∨,⊙,→, ;, 0, 1)
is a pseudo-BL algebra. Conversely, if B = (B,∧,∨,⊙,→, ;, 0, 1) is a pseudo-
BL algebra, then its {⊙,→, ;, 0, 1}-reduct is a bounded basic pseudo-hoop B◦.
2

Product pseudo-hoops

A basic pseudo-hoop A = (A,⊙,→, ;, 1) is called product if it satisfies the
following conditions
(P1) b → b2 ≤ (a ∧ (a → b)) → b;
(P2) b ; b2 ≤ (a ∧ (b ; a)) → b;
(P3) ((a → b) → b) ⊙ (c ⊙ a → d ⊙ a) ⊙ (c ⊙ b → d ⊙ b) ≤ c → d;
(P4) ((a ; b) ; b) ⊙ (a ⊙ c ; a ⊙ d) ⊙ (b ⊙ c ; b ⊙ d) ≤ c ; d.

Proposition 4.11 If A is a cancellative and a basic pseudo-hoop, then A is a
product pseudo-hoop.

Proof: Let a, b, c, d ∈ A.
(P1) b → b2 = 1 ⊙ b → b ⊙ b = 1 → b = b ≤ (a ∧ (a → b)) → b, by Proposition
4.2(i) and (9).
(P2) Similarly, applying Proposition 4.2(i

′

) and (9).
(P3) ((a → b) → b)⊙ (c⊙ a → d⊙ a)⊙ (c⊙ b → d⊙ b) = ((a → b) → b)⊙ (c →
d) ⊙ (c → d) ≤ c → d.
(P4) Similarly. 2

(Strongly) simple pseudo-hoops

A pseudo-hoop A is called simple if {1} is the unique proper normal filter of A.
The pseudo-hoop A is called strongly simple if {1} is the unique proper filter of
A. Of course, any strongly simple pseudo-hoop is simple. When A is a hoop
the two notions coincide, since in this case filters and normal filters coincide.

Lemma 4.12 Let A be a a pseudo-hoop. The following are equivalent:
(i) A is strongly simple;
(ii) for all a ∈ A, if a 6= 1 then < a >= A;
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(iii) for all a, b ∈ A, if a 6= 1 then there exists n ∈ ω − {0} such that an ≤ b;

(iv) for all a, b ∈ A, if a 6= 1 then there exists n ∈ ω − {0} such that a
n
→ b = 1;

(iv
′

) for all a, b ∈ A, if a 6= 1 then there exists n ∈ ω−{0} such that a
n
; b = 1.

Proof: (i)⇔(ii) is obvious.
By Proposition 3.2, any one of the conditions (iii), (iv), and (iv

′

) is equivalent
to (ii). 2

Lemma 4.13 Let A be a a strongly simple pseudo-hoop. For all a, b ∈ A,
(i) b → a = a implies a = 1 or b = 1;
(i

′

) b ; a = a implies a = 1 or b = 1

Proof: (i) Let a, b ∈ A such that b → a = a. It follows immediately that
bn → a = a for all n ∈ ω. If b 6= 1, then we can apply the above lemma to get
n0 ∈ ω − {0} such that bn0 ≤ a, that is bn0 → a = 1. Hence a = 1.
(i

′

) Similarly. 2

Proposition 4.14 Let A be a a basic pseudo-hoop such that for all a, b ∈ A,
b → a = a implies a = 1 or b = 1

and
b ; a = a implies a = 1 or b = 1.

Then A is a linear Wajsberg pseudo-hoop.

Proof: Let a, b ∈ A. Applying Lemma 4.8(ii), we get that (a → b) → (b →
a) = (b → a). Hence, by the hypothesis, a → b = 1 or b → a = 1, that is
a ≤ b or b ≤ a. Thus, A is a linear pseudo-hoop. Let us prove now that A is
Wajsberg. We shall prove only (W1), (W2) following similarly. Let a, b ∈ A. If
a = b, then (W1) is obvious. Assume a 6= b Since A is linear, we can suppose
that a < b. It follows that (a → b) ; b = 1 ; b = b, so it suffices to show that
(b → a) ; a = b.
By (32), [((b → a) ; a) → b] → (b → a) = b → a, so by the hypothesis
and the fact that b → a 6= 1, it follows that ((b → a) ; a) → b = 1, that is
(b → a) ; a ≤ b. But, from (24), we have also that b ≤ (b → a) ; a. Hence,
we have obtained that (b → a) ; a = b. 2

Corollary 4.15 Every strongly simple basic pseudo-hoop is a linear Wajsberg
pseudo-hoop.

Proof: It follows immediately from Lemma 4.13 and Proposition 4.14 2

5 Some examples

In this section we shall give some examples of pseudo-hoops and normal filters,
inspired by [18, 19, 12, 3, 1].
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Example 5.1 ( see [18], Example 1.1, and [19], Example 1.3 )
Let G = (G, +,−, 0,∨,∧) be an arbitrary l-group. For an arbitrary element
u ∈ G, u ≥ 0 define on the set G[u] = [0, u] the following operations:

a ⊙ b = (a − u + b) ∨ 0,
a → b = (b − a + u) ∧ u, and
a ; b = (u − a + b) ∧ u.

By [19], Proposition 1.4, G[u] = (G[u],⊙,→, ;, u) is a pseudo-MV algebra,
hence a bounded Wajsberg pseudo-hoop. For the sake of completeness, we shall
give here a proof of this fact. Firstly, let us note that G[u] is closed under
the operations ⊙,→, ;. We shall verify the identities from Theorem 2.2. Let
a, b, c ∈ [0, u].
(A0) a⊙u = (a−u+u)∨ 0 = a∨ 0 = a and u⊙ a = (u−u+ a)∨ 0 = a∨ 0 = a,
since a ≥ 0;
(A1) a → a = a ; a = u ∧ u = u;
(A2) a⊙b → c = [(a−u+b)∨0] → c = [c−(a−u+b)∨0+u]∧u = (c−b+u−a+
u)∧(c+u)∧u = (c−b+u−a+u)∧u and a → (b → c) = [(b → c)−a+u]∧u =
[(c−b+u)∧u−a+u]∧u = (c−b+u−a+u)∧(u−a+u)∧u = (c−b+u−a+u)∧u;
(A3) b⊙a ; c = [(b−u+a)∨0] ; c = [u−(b−u+a)∨0+c]∧u = (u−a+u−b+
c)∧(u+c)∧u = (u−a+u−b+c)∧u and a ; (b ; c) = a ; [(u−b+c)∧u] =
[u−a+(u−b+c)∧u]∧u = (u−a+u−b+c)∧(u−a+u)∧u = (u−a+u−b+c)∧u;
(A4) (a → b) ⊙ a = [(a → b) − u + a] ∨ 0 = [(b − a + u) ∧ u − u + a] ∨ 0 =
[(b − a + u − u + a) ∧ (u − u + a)] ∨ 0 = (b ∧ a) ∨ 0 = b ∧ a and, similarly,
(b → a) ⊙ b = a ∧ b. We also have that a ⊙ (a ; b) = [a − u + (a ; b)] ∨ 0 =
[a−u+(u−a+b)∧u]∨0 = [(a−u+u−a+b)∧(a−u+u)]∨0 = (b∧a)∨0 = b∧a
and, similarly, b ⊙ (b ; a) = a ∧ b.
Hence, G[u] is a pseudo-hoop. It is obvious that G[u] is bounded. It remains to
prove (W1) and (W2). Let a, b ∈ G[u]. We have that (a → b) ; b = [u − (a →
b)+b]∧u = [u−(b−a+u)∧u+b]∧u = [(u−u+a−b+b)∨(u−u+b)]∧u = (a∨b)∧u =
a ∨ b and (b → a) ; a = [u − (b → a) + a] ∧ u = [u − (a− b + u) ∧ u + a] ∧ u =
[(u− u + b− a + a)∨ (u− u + a)]∧ u = (b∨ a)∧ u = b∨ a = a∨ b. Hence, (W1)
is satisfied. We prove similarly that (W2) holds.

Let K be a normal convex l-subgroup of G. We define
F = {a ∈ G[u] | u − a ∈ K}.

Proposition 5.2 F is a normal filter of G[u].

Proof: Firstly, let us remark that, since K is normal, if u − a ∈ K, then
u = (u − a) + a ∈ K + a = a + K, hence −a + u ∈ K. That is, F = {a ∈ G[u] |
−a + u ∈ K}. We have that u ∈ F , since u − u = 0 ∈ K. Let a ∈ F, b ∈ G[u]
such that a ≤ b. Since K is convex, 0 ≤ u−b ≤ u−a, and 0, u−a ∈ K it follows
that u− b ∈ K, hence b ∈ F . Let a, b ∈ F , that is u− a, u− b ∈ K. We get that
0 ≤ u− (a⊙b) = u− [(a−u+b)∨0] = (u−b+u−a)∧u ≤ (u−b)+(u−a) ∈ K,
so u− (a⊙b) ∈ K, hence a⊙b ∈ F . Thus, we have got that F is a filter of G[u].
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In order to prove that F is normal we apply Proposition 3.10(ii). We shall prove
only that x⊙ F ⊆ F ⊙ x for any x ∈ G[u], the converse inclusion being similar.
Let a ∈ F , that is −a+u ∈ K, so −u+a = −(−a+u) ∈ K. Since K is normal,
we get that x−u+a ∈ x+K = K+x, hence x−u+a = k+x for some k ∈ K. It
follows that k = x−u+a−x, so k+u = x−u+a−x+u. Let b = [(k+u)∨0]∧u.
Then, 0 ≤ b ≤ u and 0 ≤ u − b = [u − (k + u) ∨ 0] ∨ 0 = [(u − u − k) ∧ u] ∨ 0 =
[(−k) ∧ u] ∨ 0 = [(−k) ∨ 0] ∧ u ≤ (−k) ∨ 0 = |k| ∈ K, so u − b ∈ K, hence
b ∈ F . We get that b ⊙ x = (b − u + x) ∨ 0 = [((k + u) ∨ 0) ∧ u − u + x] ∨ 0 =
[((k +u)∨ 0− u+ x)∧ (u− u+ x)]∨ 0 = [((k + u− u +x)∨ (−u+ x))∧x]∨ 0 =
[((k + x)∨ (−u + x))∧ x]∨ 0 = [(k + x)∨ (−u + x)∨ 0]∧ x = [(k + x)∨ 0]∧ x =
[(x − a + u) ∨ 0] ∧ x = (x ⊙ a) ∧ x = x ⊙ a. Hence, a ⊙ x = x ⊙ b ∈ x ⊙ F . 2

The following example is strongly related to Example 1.21 from [12].

Example 5.3 Let G = (G, +,−, 0,∨,∧) be an arbitrary l-group and N(G) be
the negative cone of G, that is N(G) = {a ∈ G | a ≤ 0}. On N(G) we define
the following operations:

a ⊙ b = a + b,
a → b = (b − a) ∧ 0, and
a ; b = (−a + b) ∧ 0.

Then N(G) = (N(G),⊙,→, ;, 0) is a pseudo-hoop. We shall verify the identi-
ties from Theorem 2.2. Let a, b, c ≤ 0.
(A0) a ⊙ 0 = a + 0 = a = 0 + a = 0 ⊙ a;
(A1) a → a = a ; a = 0 ∧ 0 = 0;
(A2) a ⊙ b → c = [c − (a + b)] ∧ 0 = (c − b − a) ∧ 0 and a → (b → c) =
[(c − b) ∧ 0 − a] ∧ 0 = (c − b − a) ∧ (−a) ∧ 0 = (c − b − a) ∧ 0;
(A3) b ⊙ a ; c = [−(b + a) + c] ∧ 0 = (−a − b + c) ∧ 0 and a ; (b ; c) =
[−a + (−b + c) ∧ 0] ∧ 0 = (−a − b + c) ∧ (−a) ∧ 0 = (−a − b + c) ∧ ∧0;
(A4) (a → b) ⊙ a = (b − a) ∧ 0 + a = b ∧ a and, similarly, (b → a) ⊙ b = a ∧ b.
a ⊙ (a ; b) = a + (−a + b) ∧ 0 = b ∧ a and, similarly, b ⊙ (b ; a) = a ∧ b.

Proposition 5.4 The pseudo-hoop N(G) is cancellative.

Proof: Let us verify (C1) and (C2). If a, b ∈ G[u], then b → a ⊙ b = (a + b −
b) ∧ 0 = a ∧ 0 = a and b ; b ⊙ a = (−b + b + a) ∧ 0 = a ∧ 0 = a. 2

Proposition 5.5 The pseudo-hoop N(G) is a product pseudo-hoop.

Proof: Let a, b, c ∈ A. Firstly, we prove that N(G) is basic. We shall verify
only (B1), the proof of (B2) being similar. We have that (a → b) → c =
[c− (b− a)∧ 0]∧ 0 = [(c− a+ b)∨ c]∧ 0 , (b → a) → c = [(c− b+ a)∨ c]∧ 0, and
((b → a) → c) → c = [c−(((c−b+a)∨c)∧0)]∧0 = [(c−(c−b+a)∨c)∨c]∧0 =
[((c−a+b−c)∧0)∨c]∧0 = [(c−a+b−c)∨c]∧(0∨c)∧0 = [(c−a+b−c)∨c]∧0.
Since c ≤ 0, it follows that 0 ≤ −c, so c − a + b ≤ c − a + b − c. That is,
(a → b) → c = [(c−a+ b)∨ c]∧0 ≤ [(c−a+ b− c)∨ c]∧0 = ((b → a) → c) → c.
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Apply now Proposition 5.4 and Proposition 4.11 to get that N(G) is a product
pseudo-hoop. 2

Proposition 5.6 (i) If K is a convex l-subgroup of G, then F = K ∩ N(G) is
a filter of N(G).
(ii) If K is normal in G, then F is normal in N(G).

Proof: Obvious.

Proposition 5.7 For any cancellative pseudo-hoop A there exists an l-group
G such that A ∼= N(G)

Proof: Applying Nakada Theorem (see [17], Theorem X.1), there is an l-group
G and a p.o.-monoid isomorphism f : (A,⊙, 1,≤) → (N(G), +, 0,≤). For all
a, b ∈ A, [f(a) → f(b)]+f(a) = [(f(b)−f(a))∧0]+f(a) = f(b)∧f(a) = f(b∧a) =
f((a → b) ⊙ a) = f(a → b) + f(a). Since N(G) is cancellative, it follows that
f(a) → f(b) = f(a → b). We prove similarly that f(a) ; f(b) = f(a ; b).
Hence, f is a pseudo-hoop isomorphism. 2

Example 5.8 (see [3], pag. 18, and [1], pag. 5)
Let A, B be pseudo-hoops with A ∩ B = {1}. Then, the ordinal sum of A and
B is denoted by A× B and is defined as follows. The domain of the algebra
A × B is A ∪ B, 1A×B = 1,

x ⊙ y =















x ⊙A y if x, y ∈ A
x ⊙B y if x, y ∈ B
y if x ∈ B − {1}, y ∈ A − {1}
x if x ∈ A − {1}, y ∈ B − {1}

x → y =















x →A y if x, y ∈ A
x →B y if x, y ∈ B
y if x ∈ B − {1}, y ∈ A − {1}
1 if x ∈ A − {1}, y ∈ B − {1}

x ; y =















x ;
A y if x, y ∈ A

x ;
B y if x, y ∈ B

y if x ∈ B − {1}, y ∈ A − {1}
1 if x ∈ A − {1}, y ∈ B − {1}

If A ∩ B 6= {1}, then we can replace A and B with isomorphic copies whose
intersection is {1}. It is enough to take A×{1B} and B×{1A} and define their
ordinal sum as above.

Proposition 5.9 Let A, B be pseudo-hoops with A ∩ B = {1}. Then
(i) A × B is a pseudo-hoop;
(ii) if A, B are linear pseudo-hoops, then A× B is also linear;
(iii) A and B are subalgebras of A × B;
(iv) B is a normal filter of A × B.
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Proof: (i) The proof is similar to the one given for hoops (see [11]).
(ii) Let x, y ∈ A ∪ B. If x, y ∈ A or x, y ∈ B, then use the fact that A, B are
linear to get that x ≤ y or y ≤ x. Suppose that x ∈ A − {1} and y ∈ B − {1}.
Then x → y = x ; y = 1, so x ≤ y. Similarly, if x ∈ B − {1} and y ∈ A − {1},
then y → x = y ; x = 1, so y ≤ x. Thus, we have proved that A × B is a
linear pseudo-hoop.
(iii) is obvious.
(iv) It is easy to prove that B is a filter of A × B. Let us prove that B is
normal. Let x, y ∈ A ∪ B. If x, y ∈ B, then x → y = x →B y ∈ B and
x ; y = x ;

B y ∈ B. If x, y ∈ A, then x → y = x →A y ∈ A and
x ; y = x ;

A y ∈ A. Since A ∩ B = {1}, we have that x → y ∈ B iff
x → y = 1 iff x ≤ y iff x ; y = 1 iff x ; y ∈ B. If x ∈ A − {1}, y ∈ B − {1},
then x → y = 1 = x ; y. Finally, if x ∈ B − {1}, y ∈ A − {1}, then
x → y = y = x ; y. 2

Let us consider the two element Boolean algebra L2 = {0, 1}. Then L2 is a
hoop that is not cancellative, since 0 ⊙ 1 = 0 ⊙ 0 = 0 and 1 6= 0. If A is a
pseudo-hoop that is not linear (a direct product of pseudo-hooops, e.g.), then
let B = A× L2.

Remark 5.10 B is not a a basic pseudo-hoop.

Proof: Let a, b ∈ A such that a, b are incomparable, so a →A b 6= 1 and
b →A a 6= 1. Then (a → b) ; 0 = (a →A b) → 0 = 1 and ((b → a) → 0) → 0 =
1 → 0 = 0, hence (B1) is not satisfied. 2

By Proposition 4.9, it follows also that B is not a Wajsberg pseudo-hoop. Hence,
as in the case of hoops (see [1], pag. 12), the ordinal sum construction allows
us to obtain examples of pseudo-hoops that are not basic.
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[21] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers,
Dordrecht, 1998.

[22] D. Mundici, Interpretation of AFC∗-algebras in Lukasiewicz sentential cal-
culus, Journal of Functional Analysis, 65(1986), 15-63.

[23] J.G. Raftery, J. Van Alten, On the algebra of noncommutative residuation:
polrims and left residuation algebras, Mathematica Japonica, 46(1997), 29-46.

27


