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Abstract

In this paper we define sheaf spaces of BL-algebras (or BL-sheaf spaces),
we study completely regular and compact BL-sheaf spaces and compact
representations of BL-algebras and, finally, we prove that the category of
non-trivial BL-algebras is equivalent with the category of compact local
BL-sheaf spaces.

1 Introduction

BL-algebras are the algebraic structures for Hajek’s Basic Logic [I3]. The main
example of a BL-algebra is the interval [0,1] endowed with the structure induced
by a continuous t-norm.

In this paper we study compact representations of BL-algebras, following tech-
niques used for ringed spaces by Mulvey [I7, [T6], [[8]. In [I6], Mulvey extended
the concepts of complete regularity and compactness from topological spaces to
ringed spaces and proved a compactness theorem for completely regular ringed
spaces generalizing the Gelfand-Kolmogoroff criterion concerning maximal ide-
als in the ring R(X) of continuous real functions on a completely regular space
X [10]. In [I7), Mulvey introduced compact representations of rings, showing
that they are exactly those representations of rings that establish an equivalence
of categories of modules. Using compact representations, Mulvey extended the
Gelfand duality between the categories of compact spaces and commutative C*-
algebras to Gelfand rings [I8].

Gelfand rings are characterized by a property that can be formulated in terms of
universal algebra, namely that each prime ideal is contained in a unique maximal



ideal. Universal algebras with this property and their Gelfand representations
were studied by Georgescu and Voiculescu [I2] and, in a lattice-theoretical set-
ting, by Simmons [21].

MV-algebras [B], lattice-ordered groups [I], and BL-algebras are classes of al-
gebras that also satisfy this property. Hence, the problem of obtaining similar
results for these structures is natural. Some sheaf representations for lattice-
ordered groups are studied in [T4]. Filipoiu and Georgescu [0 proved that the
category of MV-algebras is equivalent with the category of compact sheaf spaces
of MV-algebras with local stalks.

In the present paper, we give an answer for this problem in the case of BL-
algebras. In different classes of problems, sheaf representations of universal
algebras are very useful since they reduce the study of algebras to the study of
the stalks, which usually have a better known structure. In the case of our com-
pact representations, the stalks are local BL-algebras, introduced and studied
by Turunen and Sessa [25].

In the first section of the paper we recall some facts about BL-algebras and we
study some special filters of BL-algebras, used in the sequel. In Section 2, we
define sheaf spaces of BL-algebras (or BL-sheaf spaces), BL-algebras of global
sections, morphisms of BL-sheaf spaces and other notions related with sheaf
theory.

In the next section we define and study completely regular and compact BL-
sheaf spaces and we prove the compactness theorem.

In the following section we remind some general results concerning sheaf repre-
sentations of BL-algebras and we study a special kind of representations, namely
compact representations. We prove that any compact representation of a BL-
algebra arises canonically from a family of filters of the BL-algebra satisfying
certain conditions.

Finally, in the last section of the paper we prove that the functor from the
category of compact local BL-sheaf spaces to the category of non-trivial BL-
algebras, obtained by assigning to each BL-sheaf space the BL-algebra of global
sections determines an equivalence between these categories.

2 BL-algebras. Definitions and first properties

A BL-algebra [13] is an algebra (A, A, V,®,—,0,1) with four binary operations

A,V,®,— and two constants 0, 1 such that:

(i) (A, A,V,0,1) is a bounded lattice;

(i) (4,®,1) is a commutative monoid;

(iii) ® and — form an adjoint pair, i.e.
c<a—biffa®c<bforall a,b,ce A

(iv)anb=a® (a — b);

(v) (a—=b)V((b—a)=1.

A BL-algebra A is nontrivial iff 0 # 1.

For any BL-algebra A, the reduct L(A) = (A, A, V, 0, 1) is a bounded distributive

lattice.



A BL-chain is a linear BL-algebra, i.e. a BL-algebra such that its lattice order
is total.

For any a € A, we define a= = a — 0. We denote the set of natural numbers
by w. We define a® =1 and a™ = a" ! ®a for n € w—{0}. The order of a € A,
in symbols ord(a), is the smallest n € w such that a™ = 0. If no such n exists,
then ord(a) = co.

The following properties hold in any BL-algebra A and will be used in the sequel:
Jaob<aAb<ab
) a<bimpliesa®c<bOc
) 0—a=1landl—a=a
) a—b=1iffa<b
)aob=0iff a < b~
)a®Ga =0
Ja—(b—c¢)=(a®b) —c

) (anb)"=a Vb and (aVb)” =a” Ab”
) 17=0and 0~ =1

1.10) o= =1iffa=0

1.11) a Vb =1 implies a” Vb"* =1 for any n € w

Let A be a BL-algebra. A filter of A is a nonempty set F' C A such that for all

a,b€e A,

(i) a,b € F implies a ©® b € F}

(ii) a € F and a <bimply b € F.

A filter F' of A is proper iff F' # A.

By (1.1) it is obvious that any filter of A is also a filter of the lattice L(A). A

proper filter P of A is called prime provided that it is prime as a filter of L(A):
aVbe Pimpliesaec Porbe P.

A proper filter M of A is called mazimal (or ultrafilter) if it is not contained in

any other proper filter.

We shall denote by Spec(A) the set of prime filters of A and by Max(A) the

set of maximal filters of A. Let us remind some properties of filters that will be

used in the sequel.

Proposition 2.1. [24, Proposition §]
If A is a nontrivial BL-algebra, then any proper filter of A can be extended to a
maximal filter.

Proposition 2.2. [24, Proposition 6]
Let P be a prime filter of a nontrivial BL-algebra A. Then the set
F={F|PCF and F is a proper filter of A}

is linearly ordered with respect to set-theoretical inclusion.

Proposition 2.3. [8, Proposition 1.6
If A is a nontrivial BL-algebra, then any prime filter of A is contained in a
unique maximal filter.

Proposition 2.4. [24, Proposition 7]
Any mazimal filter of A is a prime filter of A.



Let X C A. The filter of A generated by X will be denoted by < X >.
We have that < ) >= {1} and < X >={a € A |21 ® - ®z, < a for some
n € w—{0} and some x1, -+ ,x, € X} if) # X C A Foranya€ A, <a >
denotes the principal filter of A generated by {a}. Then, <a>={be A|a™ <b
for some n € w — {0}}.

Lemma 2.5. Let F,G be filters of A. Then
<FUG>={acA|bOc<a for someb€eF, ce G}

Proposition 2.6. Let F(A) be the set of filters of A. Then (F(A),C) is a
complete lattice. For every family {F;}icr of filters of A, we have that
NierFy = NierFy and Vier F; =< Uier Fi > .

With any filter F' of A we can associate a congruence relation ~r on A by
defining

a~pbifa—-beFandb—ae Fiff (a—b) o (b—a)eF.
For any a € A, let a/F be the equivalence class a/ ~p. If we denote by A/F the
quotient set A/..,., then A/F becomes a BL-algebra with the natural operations
induced from those of A.

Proposition 2.7. [[3]
Let F' be a filter of A and a,b € A.
(i) a/F =1/F iff a € F;
(it) a/F =0/F iffa~ € F;
(iii) for all a,b € A,
a/F <b/F iffa - beF;
(iv) A/F is a BL-chain iff F' is prime.

If h: A — B is a BL-morphism, then the kernel of h is the set Ker(h) =
{a € A | h(a) =1}. It is easy to see that

Proposition 2.8. Let h: A — B be a BL-morphism. If G is a (proper, prime)
filter of B, then h~Y(G) is a (proper, prime) filter of A. Thus, in particular,
Ker(h) is a proper filter of A.

Lemma 2.9. [7, Proposition 1.13]
Let A be a nontrivial BL-algebra and M a proper filter of A. The following are
equivalent:
(i) M is mazimal;
(1) for any x € A,
x ¢M implies (™)~ € M for some n € w.

Proposition 2.10. Let h: A — B be a BL-morphism. If N is a maximal filter
of B, then h=Y(N) is a mazimal filter of A.

Proof. By Proposition Z8 we have that h=1(N) is a proper filter of A. In order
to get that it is maximal, we shall apply Lemma EZO Let x € A such that
x ¢h~Y(N), hence h(z) ¢N. Since N is a maximal filter of B, there is n € w
such that (h(z)™)~ € N, that is h((z™)~) € N, since h is a homomorphism of
BL-algebras. We have got that (z™)~ € h™1(N). O O



For any filter F of A, let us denote by [|r the natural homomorphism from
A onto A/F, defined by [|r(a) = a/F for any a € A. Then F = Ker([|r).

Proposition 2.11. [T, Proposition 1.12]

Let A be a BL-algebra and F' a filter of A.

(i) the map G +% [|r(G) is an inclusion-preserving bijective correspondence
between the filters of A containing F and the filters of A/F. The inverse map
18 also inclusion-preserving;

(i1) G is a proper filter of A containing F iff [|r(G) is a proper filter of A/F.
Hence, there is a bijection between the proper filters of A containing F' and the
proper filters of AJF;

(iii) there is a bijection between the maximal filters of A containing F and the

mazimal filters of A/F.
Following [25], a BL-algebra A is local if it has a unique maximal filter.

Proposition 2.12. [25]
Let A be a local BL-algebra. Then its unique maximal filter is
{a € A ord(a) = xx}.

Proposition 2.13. [25]
Any BL-chain is a local BL-algebra.

Proposition 2.14. Let P be a proper filter of A. The following are equivalent:
(i) A/P is a local BL-algebra;

(ii) P is contained in a unique mazimal filter of A.
Proof. Apply [, Proposition 2.6 |, and [T, Proposition 2.8 ]. O O

Let A be a nontrivial BL-algebra. The prime spectrum of A is the set Spec(A)
of prime filters of A, endowed with the Zariski topology, of which the subsets of
the form

D(a) = {P € Spec(A) | a ¢P} fora € A
form a basis of open sets.

The mazimal spectrum of A is the subspace Maz(A) of Spec(A) consisting of
the maximal filters of A with the induced topology. The subsets

d(a) = D(a) N Maxz(A) = {M € Max(A) |a ¢M},a€ A
form a basis for the topology of the maximal spectrum. Then Spec(A) is a
compact topological space and Maz(A) is compact and Hausdorff [I5].

In the sequel, we shall remind some facts concerning the reticulation of a BL-
algebra A. For details see [I5].
Let us define a binary relation = on A by

a =0biff D(a) = D(b).
Then = is an equivalence relation on A compatible with the operations ®, A
and V. For a € A let us denote by [a] the class of a € A with respect to =. The
bounded distributive lattice 8(A) = (A/=, V, A, [0], [1]) is called the reticulation
of the BL-algebra A.
If h: A — B is a homomorphism of BL-algebras, then 3(h) : 5(4) — B(B),



defined by SB(h)([a]) = [h(a)], is a homomorphism of bounded distributive lat-
tices. It follows that we can define a functor § from the category of nontrivial
BL-algebras to the category of bounded distributive lattices. The functor [ is
called the reticulation functor.

If F is a filter of A, then B(F) = {[a] | a € A} is a filter of the lattice 3(A) and
the mapping F +— (B(F) is an isomorphism between the lattice F(A) of filters
of A and the lattice F(3(A)) of filters of §(A). If P € Spec(A), then B(P) is a
prime filter of 3(A) and the mapping P — [(P) is a homeomorphism between
Spec(A) and Spec(B(A)). Similarly, Max(A) is homeomorphic to Max(5(A)).

Let us remind that a bounded distributive lattice L is called normal [26, @] if
each prime ideal of L contains a unique minimal prime ideal.

Proposition 2.15. [I5, Proposition 3.14]
For any nontrivial BL-algebra A, B(A) is a normal lattice.

To any prime filter P of a bounded distributive lattice or a BL-algebra A we
associate the set

O(P)={a€ A|aVvb=1 for some b ¢P}.
Then it is easy to see that O(P) is a proper filter of A such that O(P) C P.
We have the following characterization of normal lattices

Proposition 2.16. [[9, Theorem 3]

Let L be a bounded distributive lattice. The following are equivalent:

(i) L is normal;

(i) for any mazimal filter M of L, M is the unique mazimal filter that contains
O(M).

Lemma 2.17. For any maximal filter M of A,

BO(M)) = O(B(M)).
Proof. In the proof, we use that for all a € A, [a] = [1] iff @ = 1 and for each
maximal filter M of A, a € M iff [a] € S(M) [1H].
“C” Let [a] € B(O(M)), so there is b € O(M) such that [a] = [b]. Since
b € O(M), there is ¢ ¢M such that bve = 1. It follows that [a]V[c] = [b]V[c] = [1]
and [c] ¢8(M). Hence, [a] € O(B(M)).
“27 If [a] € O(B(M)), then there is [b] ¢6(M) such that [a] V [b] = [1]. Hence,
there is b ¢M such that a Vb =1, that is a € O(M), so [a] € B(O(M)). O O

Proposition 2.18. Let A be a nontrivial BL-algebra. Then

(i) for any mazimal filter M of A, M is the unique maximal filter that contains
O(M);

(i) for any distinct mazimal filters M, N of A, O(M)V O(N) = A;

(i1i) AJO(M) is local for any M € Max(A).

Proof. (i) Apply Proposition ZT8 Lemma T7 and the properties of the retic-
ulation of A.

(ii) Suppose that O(M)V O(N) is a proper filter of A. Then, using Proposition
BT we get a contradiction to (i).

(iii) Apply (i) and Proposition EZT4 O O



Proposition 2.19. [6, Proposition 4.36]
Let A be a nontrivial BL-algebra. Then

mMEMaw(A) O(M) = {1}

3 BL-sheaf spaces. Definitions and first proper-
ties

A sheaf space of BL-algebras (or a BL-sheaf space) is a triple (F,p, X) such that
the following properties are satisfied:

(i) F and X are topological spaces;

(ii) p: F — X is a local homeomorphism from F onto X;

(iii) for each z € X, p~!({z}) = F, is a nontrivial BL-algebra with operations
denoted by Vg, Ay, O, — 2, 0z, 143

(iv) the functions (a,b) — aVyb, (a,b) — aAyb, (a,b) — a®yb, (a,b) — a —z b
from the set {(a,b) € F x F | p(a) = p(b)} into F are continuous, where
z = p(a) = p(b);

(v) the functions 0,1 : X — F', which assign to each « in X the zero 0,, and the
unit 1, of F, respectively, are continuous.

X is known as the base space, F as the total space and F) is called the stalk of

FatzxeX.

If Y C X, then a section o over Y is a continuous map o : Y — F satisfying

(poo)(y) =y for all y € Y. The set of all sections over Y form a nontrivial BL-

algebra with the operations defined pointwise, that will be denoted by T'(Y, F).

The elements of I'(X, F') are called global sections.

For every o,7 € T'(Y, F'), we shall use the following notation:
o=71]={yeY|oly) =7y}

A BL-sheaf space (F,p, X) is called local if for each z € X the stalk F), is a local

BL-algebra.

We shall use the expression a BL-algebra of global sections to refer to any BL-

subalgebra of I'(X, F). If A is a BL-algebra of global sections, then for each

r € X, we define p2 : A — F, by pA(c) = o(x) forall 0 € A. If A =T(X, F),

then we shall denote p2 by p,.

The following properties are well-known and will be used in the sequel. For

details see [23] Bl 22].

Proposition 3.1. Let (F,p, X) be a BL-sheaf space.

(i) for any Y C X and o,7 € T(Y, F), the subset [c = 7] is open in Y;

(i1) for each a € F there are an open subset U of X and a section o € T'(U, F)
such that p(a) € U and o(p(a)) = a;

(ti)) if ZCY C X and 0 € (Y, F), then o|z € I(Z, F);

(iv) the family {o(U) | U is open in X,o € I'(U, F)} is a basis for the topology
of F;

(v) if A is a BL-algebra of global sections, then p2 is a BL-morphism for each
reX;



(vi) if (F,p,X) and (G,q,X) are BL-sheaf spaces and f : F — G such that

qo f =p, then
f is continuous iff f is open iff f is a local homeomorphism.

If A is a BL-algebra of global sections, U is an open subset of X and o is a
section over U, we say that o is locally in the BL-algebra of global sections A if

(*) there are an open covering (U;);cr of U and a family (o;);es of elements of
A such that o|y, = 04|y, for all i € I.

The following lemma follows immediately from Proposition BIKiv).

Lemma 3.2. Let (F,p,X) be a BL-sheaf space and A a BL-algebra of global
sections such that every section over an open subset of X is locally in the BL-
algebra A. Then the family {o(U) | U is open in X, o € A} is a basis for the
topology of F.

Proposition 3.3. Let (F,p,X) be a BL-sheaf space and A a BL-algebra of
global sections. The following are equivalent:

(i) every section over an open subset of X is locally in the BL-algebra A;

(i) for each x € X, the BL-morphism p2 is onto.

Proof. (1)=(ii) Let + € X and a € F,, that is a € F such that p(a) = x.
Applying PropositionBILii), there is an open neighborhood U of x and a section
o over U such that o(z) = a. By (i), we get an open covering (U;);er of U and
a family (0;)ier of sections from A such that o|y, = o]y, for all ¢ € I. Since
x € U, we have that « € Uy, for some k € I. It follows that oy (z) = o(x) = a.
Hence, we have got o5, € A such that p2(oy) = a. That is, p2 is onto.

(ii)=-(i) Let U be an open subset of X and o a section over U. For each z € U,
we have that o(z) € F,, hence, by (ii), there is 7% € A such that 7%(z) = o(z).
Applying Proposition BI(iii) and (i), it follows that 77|y € I'(U, F) and the

subset U, = [77|y = o] is an open subset of U such that € U,. Thus, we
have got an open covering (Uy)zev of U and a family (7%),ecp of sections from
A such that 77|y, = (7%|v)|v, = o|u, for all z € U. O O

Let (F,p,X) be a BL-sheaf space and ¢ € T'(Y, F) a section over Y C X.
The cosupport of o, cosupp(c), is the closed hull in the subspace Y of the set of
those points x € Y for which o(x) # 1,:

cosupp(o) ={z €Y | o(z) # 1.}

It is easy to see that (cosupp(0))® = [0 = 1|y].

Let X and Y be topological spaces and f : Y — X a continuous function. Let
(F,p,X) and (G, q,Y) be two BL-sheaf spaces. A morphism o : F — G over
[ is a family (ay : Fy) — Gy)yey of BL-morphisms satisfying the following
condition:

If U is open in X and o € ['(U, F), define 8 : f~1(U) — G by

By) = ay(a(f(y)))-
Then §3 is continuous, and therefore 3 € T'(f~1(U), G).



We shall write 8 = af ().

It follows that a morphism « : I — G over f induces a BL-morphism oz;{& :
I(U,F) — T(f~1(U),G) for all open U in X. We shall denote oz by a. Since
f7HX) =Y, ag is a BL-morphism between the BL-algebras of global sections
I'(X,F) and (Y, G).

An example of a morphism over f is given by the canonical mapping from a
BL-sheaf space (F, p, X) to the BL-sheaf space (f ~(F),q,Y), induced by f and
(F,p, X), defined as follows.

Define f~1(F) = {(y.a) € ¥ x F | f(y) = p(a)} = U,ey{y} x Fyq and
q: f7HF) =Y byq(y,a) =y. Thenforally e Y, f~1(F), = {y} x Fy(,. For
each y € Y, define i, : Ff(yf — fTHF), by iy(a) = (y,a). We get easily that i,
is a bijection. We make f~!(F'), a BL-algebra by transporting the BL-structure
of Fy(y) to f~1(F), by means of i,.

Thus, we have got a BL-sheaf space (f~(F),q,Y) and a morphism i : F —
J7H(F) over f, where i is the family (iy)yey -

A morphism of BL-sheaf spaces (f,a) : (F,p,X) — (G, q,Y) consists of a con-
tinuous function f:Y — X and a morphism « : F — G over f.

An isomorphism of BL-sheaf spaces is a morphism (f, ) such that f is a home-
omorphism and o, is an isomorphism of BL-algebras for all y € Y.

If (f,a): (F,p,X) — (G,q,Y) and (9,08) : (G,q,Y) — (H,r,Z) are two mor-
phisms of BL-sheaf spaces, then their composition is the morphism (fog, Soa),
where (8o ), = . 0y forall z € Z.

Let (F,p, X) and (G, q, X) be BL-sheaf spaces over the same topological space
X. If (ag : Fr — Gg)zex is a family of functions, then we can define a func-
tion o : F' — G by a(a) = ay(a), where € X is unique such that a € Fj.
Conversely, a function « : F' — G can be seen as a family (a; : Fr — Gy)zex,
where a; = « | Fj; for all z € X.

Proposition 3.4. (1x,a) : (F,p,X) — (G,q,X) is a morphism of BL-sheaf
spaces iff a : F' — G is a continuous function such that goa = p and oy : F, —
Gy is a BL-morphism for all x € X.

We shall denote by BL the category of nontrivial BL-algebras and BL-
morphisms and by BL — ShSp the category of BL-sheaf spaces and morphisms
of BL-sheaf spaces.

Define S(F,p, X) = I'(X, F) for any BL-sheaf space (F,p, X) and S(f, @) = ax
for every morphism (f,«) : (F,p, X) — (G,q,Y). Then

Proposition 3.5. S : BL—ShSp — BL is a functor, called the section functor.

4 Compact BL-sheaf spaces

Throughout, BL-algebras are nontrivial and X will be assumed to denote a
Hausdorff topological space.



A BL-sheaf space (F, p, X) is called completely regularif it satisfies the following:

(CR) for each z € X and closed set C C X not containing x, there is o €
I'(X, F) such that o(z) = 0, and o|c = 1|C.

A completely regular BL-sheaf space (F, p, X) is called compact if the topological
space X is compact.

The following lemma gives equivalent characterizations of completely regular
BL-sheaf spaces.

Lemma 4.1. Let (F,p, X) be a BL-sheaf space. The following are equivalent:
(i) (F,p,X) is completely regular;

(i1) for each x € X and every open neighborhood U of x there is 0 € T'(X, F)
such that o(x) = 0, and o(y) = 1, for all y ¢U;

(i11) for each x € X and every open neighborhood U of x there is o0 € T'(X, F)
such that o(x) = 0, and cosupp(o) C U.

Proof. (i)=(ii) Let C' = U*. Then C is a closed subset of X such that = ¢C,
and applying (i) we get (ii).

(ii)=-(i) Take U = C° and apply (ii).

(ii)<(iii) Apply the fact that (cosupp(o))® = [0 = 1]. O O

Proposition 4.2. Let (F,p, X) be a completely reqular BL-sheaf space. Then
(i) X is a regular topological space;

(i1) every section over an open subset of X is locally in the BL-algebra T'(X, F')
of global sections of the BL-sheaf space;

(ii) the family [0 = 1],cr(x,ry form a basis for the topology of X ;

() Fpy = A/Ker(p,) for allxz € X.

Proof. (i) Let © € X and U be an open neighborhood of z. Applying Lemma
E\iii), there is o € I'(X, F)) such that o(x) = 0, and cosupp(c) C U. Hence,
z € [0 = 0] and, since F), is nontrivial for all y € X, we have that 0, # 1, for
ally € X, soxz € [0 = 0] C cosupp(o). Hence, there is a closed neighborhood
C = cosupp(o) of x such that C' C U. Thus, the closed neighborhoods of = form
a basis for neighborhoods, so X is regular.

(ii) We shall prove that (ii) from Proposition B3 is satisfied with A = T'(X, F).
Hence, we have to show that for each x € X, p,. is onto. Let a € F,, thatisa € F
such that p(a) = z. Applying Proposition BLii), there is an open neighborhood
U of = and a section 7 over U such that 7(z) = a. By Lemma EILiii), there is
0 € T'(X, F) such that 6(z) = 0, and cosupp(§) C U. Let 0 : X — F defined
by o(y) = 0(y)~ —, 7(y) for y € U and o(y) = 1, for y ¢U. It is obvious that
poo =1y and that p,(0) =o(x) =0(z)” —, 7(x) =0, =, a=1, > a=a.
It remains to prove that o is continuous. Since cosupp(6) C U, we get that
U U (cosupp(8))® = X. Let us prove that o(y) = 1, for all y € (cosupp(6))°.
If y ¢U, then o(y) = 1, by the definition of . If y € U N (cosupp(6))°, then
0(y) =1y and o(y) = 0(y)~ —y 7(y) =1, —, 7(y) = 0, — 7(y) = 1,,. Hence,
we have got that o|v, o|(cosupp(0))e are continuous and U, (cosupp(f))¢ form an
open covering of X. It follows that ¢ is continuous. Thus, we have obtained
o € I'(X, F) such that p; (o) = a.
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(ili) We have that [0 = 1] is open in X for all 0 € I'(X, F'). We shall prove that
for any z € X and any open neighborhood U of x there is ¢ € I'(X, F') such
that = € [0 = 1] C U. From this we get immediately that [0 = 1],cp(x, ) form
a basis for the topology of X. Applying Lemma EI\iii), there is 7 € T'(X, F)
such that 7(z) = 0, and cosupp(r) C U. Let 0 = 7~. Then, o(z) = (7(z))” =
0, =1z, hencez € [o =1]. If y € [0 =1], then o(y) = 1,, that is (7(y))” = 1,.
It follows that 7(y) # 1,, since 0, # 1,, so y € cosupp(r) C U. Hence, we have
proved that [0 = 1] is an open neighborhood of x contained in U.

(iv) We have proved at (ii) that the BL-morphism p, : A — Fy, p;(0) = o(x)
is onto. Hence, F, = A/Ker(py). O O

Let A be a BL-algebra of global sections of the BL-sheaf space (F, p, X). We
say that A is completely regular in the BL-sheaf space (F,p, X) if for each z € X
and closed set C' C X not containing z, there is o € A such that o(z) = 0, and
ole =1le.

If A is completely regular in (F,p, X) and X is compact, then A is said to be
compact in the BL-sheaf space (F,p, X).

It is easy to see that, as in Lemma ECTl A is completely regular in the BL-sheaf
space (F,p, X) iff for each € X and every open neighborhood U of z there is
o € A such that o(z) = 0, and o(y) = 1, for all y ¢U. The following result
extends Proposition EA(i) and (iii) and its proof is similar.

Lemma 4.3. Let A be a BL-algebra of global sections that is completely regular
in (F,p,X). Then

(i) X is regular;

(i) the family [0 = 1],ca form a basis for the topology of X.

The following lemma collects some obvious facts that will be used in the
sequel.

Lemma 4.4. Let (F,p, X) be a BL-sheaf space.

(i) (F,p, X) is completely reqular (compact) iff the BL-algebra T'(X, F) of global
sections is completely regular (compact) in (F,p, X);

(ii) Suppose that A and B are BL-algebras of global sections such that A C B.
If A is completely regular (compact) in (F,p,X), then B is completely reqular
(compact) in (F,p, X);

(i11) If there is a BL-algebra A of global sections that is completely regular (com-
pact) in (F,p, X), then (F,p, X) is completely regular (compact).

Proposition 4.5. Let A be a BL-algebra of global sections that is compact
in (F,p,X) and suppose that every global section is locally in A. Then A is
necessarily the BL-algebra T'(X, F).

Proof. Let o € T'(X, F). Since o is locally in A, it follows that there are an
open covering (U;)ier of X and a family (0;);er of elements of A such that
olu, = 0|y, for all i € I. For each x € X, there is i, € I such that z € U;, and
applying the fact that A is completely regular in (F,p, X), we get 7;, € A such
that 7, (z) = 0, and 7, (y) = 1, for all y ¢U;,. Let us denote U;, N [1;, = 0]
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by V;. Then, x € V,, C U;, for all z € X, so the family (V,).cx is an open
covering of X. Since X is compact, it follows that there are x1,--- ,x, € X
such that X =V, U.--- UV, . Let us denote V,, by Vi, i,, by i, and Tiw, by
73, for all k = 1,n. We shall prove that o = /\k:L—n(aik V7). Let z € X and
J={k=T1,n|2z €U} Itisobvious that J is nonempty, since ,_i, U.

ik
X. We have that o;, () = o(z) for all £ € J and = €U, for all k €J, so
Ti(z) = 1, for all k ¢J. It follows that [A;c (03, (2) V k()] A [Ag s (03 (2) V
7)) = ey (060) V@ AT g (030 (2) V1)) = 0(2)V Ay To(2). Since
X = Up—17 Vi, thereis j = 1,n such that z € Vj, so 7j(x) = 0, and j € .J, since
Vj C U, It follows that (A\,c; 7)(x) = Oz, hence [\, _7(0i, V7)](2) = o(2).
Thus, 0 = A\,_15 (04, V 7%), hence o € A.

’ O O

4.1 The compactness theorem

In the sequel, A will be a BL-algebra of global sections of the BL-sheaf space
(F,p, X).

For each z € X, let us denote K, = Ker(p2) = {0 € A| o(x) = 1,}. Since A
is nontrivial, it follows that K, is a proper filter of A.

A filter T of A is called fized if there is x € X such that T'V K is a proper filter
of A. Otherwise, T is said to be a free filter of A.

Lemma 4.6. Let A be a BL-algebra of global sections of (F,p,X), P a prime
filter and M a mazimal filter of A. Then

(i) M is fixed iff M contains the filter K, for some x € X;

(i) if Mp is the unique mazximal filter that contains P, then P is fived iff Mp
18 fized;

(iii) if P contains the filter K, for some x € X, then P is fized.

Proof. (i) Suppose that M is fixed, so there is x € X such that M V K, is
a proper filter of A. Since M C M Vv K, and M is maximal, it follows that
MV K, =M, hence K, C M. Conversely, if K, C M for some x € X, we get
that M vV K, = M, so M V K, is a proper filter of A. That is, M is fixed.

(ii) If Mp is fixed, then, by (i), there is x € X such that K, C Mp. Since
P C Mp, we have that PV K, C Mp, hence PV K, is a proper filter of A,
i.e. P is fixed. Conversely, suppose that P is fixed, that is P V K, is proper
for some x € X. We get that Mp and PV K, are proper filters containing the
prime filter P, so applying Proposition Z2 and the fact that Mp is maximal, it
follows that PV K, C Mp. Hence, K, C Mp, so by (i), Mp is fixed.

(iii) Since K, C Mp, we get that Mp is fixed, by (i). Applying (ii), we obtain
that P is also fixed. O O

Lemma 4.7. Let A be a BL-algebra of global sections of (F,p, X). The following
are equivalent

(i) every proper filter of A is fized;

(i1) every prime filter of A is fized;

(iii) every mazimal filter of A is fized.
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Proof. (i)= (ii) Obviously.

(ii)= (iii) Apply the fact that Maxz(A) C Spec(A), by Proposition 241
(iii)=>(i) Let F be a proper filter of A. By Proposition Bl there is a maximal
filter M such that FF C M. Since M is fixed, we get x € X such that K, C M.
We have that F, K, C M, so FV K, C M. Hence, FV K, is a proper filter of
A, that is F' is fixed. O O

Lemma 4.8. Let A be a BL-algebra of global sections of (F,p, X) and suppose
that X s compact. Then

(i) for every prime filter P of A there is x € X such that K, C P;

(i1) every proper filter of A is fized.

Proof. (i) Let P be a prime filter of A and suppose that K, ¢P for any z € X.
That is for any = € X there is ¢* € K, such that ¢* ¢P. Since 0* € K, we
get that 0% (x) = 1, that is € [¢® = 1]. Thus, X = [J,cx[0” = 1], hence the
family [0® = 1], x is an open covering of X. Since X is compact, it follows that
there are x1,- -+ ,x, € X such that X = |J!_, [0; = 1], where o; denotes ¢ for
i = 1,n. It follows immediately that oy V---V o, =1 € P. Since P is prime,
we obtain that o; € P for some i = 1,n. Thus, we have got a contradiction.

(ii) Applying (i) and Lemma EC0{(iii), we obtain that every prime filter of A is
fixed. Now apply LemmaET to get that every proper filter of A is fixed. O O

In the following, we shall denote by Specx(A) the set of prime filters of A
that are fixed and by Mazx(A) the set of maximal filters of A that are fixed.

Lemma 4.9. Suppose that A is completely regular in (F,p, X). Then

(i) for any P € Specx(A) there is a unique x € X such that K, C Mp, where
Mp is the unique mazximal filter that contains P;

(i1) for any M € Maxx(A) there is a unique x € X such that K, C M.

Proof. (i) The existence of € X such that K, C Mp follows from Lemma E0l
It remains to prove the unicity. Let us suppose that there is y # x such that
K, C Mp. Since X is Hausdorff, there is an open neighborhood U of z such
that y ¢U. Applying now Lemma EI(ii), there is o € A such that o(x) = 0,
and o(z) = 1, for all z ¢U. It follows that o(y) = 1,, so 0 € K, C Mp and
o~ (z) = 1, hence 0~ € K, C Mp. We have got that 0,0~ € Mp, hence
c®oc~ =0 € Mp. Thus, we have obtained that Mp is not proper, that is a
contradiction.

(i) By (i). O 0

If A is completely regular in (F,p, X), then, by the above lemma, we can
define a function s : Specx(A) — X that assigns to each P € Specx(A) the
unique € X such that K, C Mp. We shall denote by m its restriction to
Maxx(A). Then m assigns to every fixed maximal filter M of A the unique
x € X such that K, C M.

Corollary 4.10. Let A be a BL-algebra of global sections of (F,p, X) and sup-
pose that X is compact. Then for every prime filter P of A there is a unique
xr € X such that K, C P.
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Proof. Apply Lemmas and £9 O O

Lemma 4.11. Suppose that A is completely reqular in (F,p, X). Then for any
M e Mazxx(A), Km(M) COM).

Proof. Let © = m(M) and o € K,. We get that o(z) = 1,, so z € [0 = 1].
Applying the fact that A is completely regular in (F,p, X), we get 7 € A such
that 7(z) = 0, and 7(y) = 1, for all y o = 1]. It is clear that o V 7 = L.
From 7(x) = 0, it follows that 77 (x) = 15, so 7~ € K, C M. Since M is
proper, we must have 7 ¢M. Hence, there is 7 ¢M such that o V 7 = 1, that is
o€ O(M). O O

Lemma 4.12. Let (F,p,X) be a completely regular local BL-sheaf space and
A=T(X,F). Then

(i) for any x € X there is a unique M € Max(A) such that K, C M;

(1)) Km(ary = O(M) for any M € Mazxx(A).

Proof. (i) By Proposition EA(v) and the fact that Ker(p,) = Ky, it follows
that F, = A/K, for all x € X. Hence, A/K, is local for any = € X. Apply
now Proposition EZT4

(ii) Applying Proposition EETT, we have that Ky, € O(M). Let us prove the
converse inclusion. If we denote z = m(M), then K, C M. Let o0 € O(M),
so there is 7 €M such that ¢ V7 = 1. Since F, is local, its unique maximal
filter is N, = {a € F, | ord(a) = oo}. By Proposition LT, we have that
p; 1(N,) is a maximal filter of A and it is easy to see that K, C p,*(INV,). Since
K, Cp; (N,), K, € M and p,'(N,), M are maximal filters of A, applying (i)
it follows that p,1(N,) = M. Now, 7 ¢M implies 7 ¢p, 1(N,), so ord(r(z))) <
0o. Thus, there is n € w — {0} such that (7(z))™ = 0,. Since o V 7 =1, we get
that o(x) Vy 7(z) = 14, so (o(x))" Vg (7(x))™ = 1, that is (o(x))™ = 14, hence
o(z) = 1,. Thus, we have got that o € K. O O

Proposition 4.13. Let A be completely reqular in (F,p,X). Then s is onto
and m s continuous and onto.

Proof. Let x € X. Then K, is a proper filter of A, so, by Proposition 21l
there is a maximal filter M such that K, C M. Applying Lemma EETi), we
get that M is fixed. Hence, M € Maxx(A) is such that m(M) = z. Thus, m
is onto and, obviously, s is also onto. Let us prove now that m is continuous.
Let M € Maxx(A), x = m(M) and U an open neighborhood of z. Since A is
completely regular in (F,p, X)), there is 0 € A such that o(z) = 0, and o(y) =
1, for all y ¢U. Let V =d(0) N Mazx(A) = {N € Maxx(A) | o ¢N}. Then
V is an open subset of Maxx(A). Since o(z) = 0,, we get that o~ (x) = 1,,
that is 0~ € K, C M. It follows that o ¢M, hence M € V. Let us prove that
m(V) CU. Let N € V and y = m(N), so K, C N. If y ¢U, then o(y) = 1,,
so 0 € Ky, hence 0 € N. This contradicts the fact that N € d(o). It follows
that y € U. Thus, we have proved that V is an open neighborhood of M such
that m(V) C U. That is, m is continuous at M. O O
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Suppose that A is compact in (F,p, X). Then, by Lemma EER we have that
Specx (A) = Spec(A) and, by Corollary ET0 s : Spec(A) — X assigns to every
prime filter P of A the unique x € X such that K, C P. We obtain the following
corollary.

Corollary 4.14. Let A be compact in the BL-sheaf space (F,p, X). Then s and
m are continuous, closed and onto.

Proof. We get that s is continuous in a similar manner with the proof of con-
tinuity of m from Proposition . To obtain that the functions are closed,
apply [20, Theorem 7.2.2; p. 71], since s, m are continuous and onto, Maxz(A)
and Spec(A) are compact and X is Hausdorff. O O

Theorem 4.15. (The compactness theorem)

Suppose that A is completely reqular in the BL-sheaf space (F,p,X). The fol-
lowing are equivalent

(i) the topological space X is compact;

(ii) every proper filter of A is fized;

(iii) every mazimal filter of A is fized;

(iv) every prime filter of A is fived;

(v) A is compact in the BL-sheaf space (F,p, X).

Proof. (i)<(v) By definition.

(i)« (i) < (iv) By Lemma BT

(i)=(ii) Apply Lemma EEX

(ii)=-(i) We have that Mazx(A) = Maxz(A) and m : Maz(A) — X. Since
m is continuous and onto and Max(A) is compact, applying a known result
of topology, it follows that X is also compact (see, e.g., |20, Theorem 7.2.1,
p.71]). O O

Proposition 4.16. If (F,p, X) is a compact BL-sheaf space and A=T(X, F),
then
m is a homeomorphism iff (F,p, X) is a local BL-sheaf space.

Proof. Applying Propositions 2T and EEZ(iv), it follows that m is injective iff
for any x € X there is a unique maximal filter M of A such that m(M) = x iff
for any x € X there is a unique maximal filter M of A such that K, C M iff
for all x € X, A/K, is local iff for all x € X, F, is a local BL-algebra. Hence, if
m is a homeomorphism, then (F,p, X) is a local BL-sheaf space. Conversely, if
(F,p, X) is local, then m is injective. We have that m is bijective, continuous
and closed, by Corollary ET4 Hence, m is a homeomorphism. [l O

Let (F,p, X) be a compact local BL-sheaf space and A = T'(X, F). By the
proof of the above proposition, we can define a function n : X — Maz(A),
that associates with every x € X the unique maximal filter M of A such that
K, C M. It is easy to see that

Proposition 4.17. Let (F,p, X) be a compact local BL-sheaf space. Then n is
the inverse of m, hence n : X — Max(A) is also a homeomorphism.
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5 Compact representations of BL-algebras

By a sheaf representation (or simply representation) of a non-trivial BL-algebra
A will be meant a BL-morphism

p: A—->T(X,F)
from A to the BL-algebra of global sections of a BL-sheaf space (F,p, X).
Hence, ¢(A) is a BL-algebra of global sections of (F,p, X). In a representation
¢, each a € A determines a global section ¢(a); in particular, for every z € X,
©(a)(x) is an element of the stalk F.
For each x € X, we define

0z A= Fy, pr(a) = p(a)(z) for all a € A,

K, = Ker(w,) = {a € A | g(a)(@) = 1,}.
Since ¢, = p, o ¢, we have that ¢, is a BL-morphism, so K, is a proper filter
of A for every x € X.
It is easy to see that Ker(y) = )
Neex Ko = {1).
For every a € A, we shall use the following notation:

V(a) = [p(a) = 1] = {o € X | @(a)(2) = L} = {w € X | a € K. }.
By Proposition BJKi), V'(a) is open in X for all a € A.
Let us remind that a representation of a non-trivial BL-algebra A as a subdirect
product of non-trivial BL-algebras (A;)icr (or a subdirect representation of A)
consists of a monomorphism

a:A—[lier A
such that for all j € I the BL-morphism

AT Lo A =5 A

is surjective.

wex Kz, hence ¢ is a monomorphism iff

Proposition 5.1. Any sheaf representation ¢ : A — T'(X, F) such that ¢ is a
monomorphism determines a subdirect representation of A

Proof. Since ¢ is a monomorphism, we have that (), .y K, = {1}. Applying
now a general result of universal algebra (see, e.g., [2], Lemma I1.8.2, p. 57) it
follows that a : A — [],cx A/Ks, defined by a(a)(x) = a/K,, is a subdirect
representation of A. O O

A filter space of a BL-algebra A is a family (T} )zex of proper filters of A,
indexed by a topological space X.
Let ¢ : A — I'(X, F) be a representation of A. The filter space (K )zex will
be called the representation space of the representation, and the filters indexed
the representation filters. The topology generated by the family (V(a))aea of
subsets of X is called the representation topology on the space X. Then, any
topology on X contains the representation topology.
We say that a filter space (Ty)zex canonically determines a representation of A
if there is a representation ¢ : A — I'(X, F') such that T, = K, for all z € X.

In the sequel, we shall give an existence theorem for representations of BL-
algebras.
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Let A be a nontrivial BL-algebra and (T, ),ex a filter space of A such that
the subset V(a) = {z € X | a € T} is open in X for all a € A. Then a
BL-sheaf space (Fa,pa,X) and a representation ¢ : A — I'(X, F4) can be
constructed in the following way, given in [B] for universal algebra. Let Fa
be the disjoint union of the sets (A/T:)zex and pa : Fa — X the canonical
projection, so p,'({z}) = A/T, for all z € X. For all € X, T}, is a proper
filter of A, so A/T, is a nontrivial BL-algebra. For each a € A, define the
map [a] : X — Fy4 by [a](z) = a/T,. Endow F4 with the topology generated
by the family {[a](U) | @ € A and U is open in X}. Applying [, Corollary
2], we get that (Fa,pa,X) is a sheaf space of BL-algebras and the function
v: A—T(X, Fa), defined by ¢(a) = [a] for all a € A, is a representation of A.
It is easy to see that K, =T, for all x € X.

Hence, we get the following theorem:

Theorem 5.2. Let A be a nontrivial BL-algebra and (Ty)zex a filter space of
A such that the subset V(a) = {x € X | a € Ty} is open in X for all a € A.
Then (Ty)zex canonically determines a representation of A.

Corollary 5.3. Any subdirect representation of A determines a sheaf represen-
tation of A.

Proof. Let a : A — [[,cx Az be a subdirect representation of A. For any
x € X, take T, = Ker(m,; o ) and consider on X the topology generated by
the family (V' (a))qca. Apply now Theorem O O

From now on, X will be assumed to denote a Hausdorff topological space.
We shall define completely regular and compact representations and, finally,
we shall prove that any compact representation arises canonically from a filter
space of the BL-algebra satisfying certain conditions.

Thus, a representation ¢ : A — T'(X,F) of a BL-algebra A in a BL-sheaf
space (F,p, X) will be said to be a completely reqular representation of A if ¢
is a monomorphism and ¢(A) is completely regular in (F,p, X). A compact
representation of A is a monomorphism ¢ : A — T'(X, F) such that ¢(A4) is
compact in (F,p, X). Hence, a compact representation is a completely regular
representation ¢ : A — I'(X, F') with the property that X is compact.

By Proposition 2l we get that any completely regular (compact) representation
determines a subdirect representation of A.

Proposition 5.4. Let ¢ : A — I'(X, F) be a completely reqular representation
of A. Then

(i) for any distinct x,y € X, there is a € A such that p(a)(x) = 0, and
pla)(y) =1y;

(1) the topology on X is the representation topology.

Proof. (i) Since X is Hausdorff, we have that {y} is closed in X. Apply now
the fact that ¢(A) is completely regular in (F,p, X) for the closed set {y} and
z ¢y}

(ii) As we have noticed, the topology on X contains the representation topology.
For the converse, apply Proposition EE3L(ii). O O
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For any BL-algebra A, a family (T,),cx of proper filters of A will be said
to be coprime if (. x T = {1} and for any distinct z,y € X we have

T,V T, =A.
The family (T%)zex is called strongly coprime if [\, T = {1} and for any
z € X and a € T,, we have

T, V({T, |y € X and a ¢T},} = A.

In the sequel, let us consider a filter space (T.).cx of A such that the subset
Via)={x € X |a€T,}isopenin X for all a € A. By Theorem .2 there is a
representation ¢ : A — I'(X, F') of A such that T, = K, = {a € A | p(a)(x) =
1.} for all z € X.

Lemma 5.5. If ¢ is completely regular, then the family (T,)zex 1S coprime.

Proof. Since ¢ is a monomorphism, we have that (| .y T = {1}. Let 2,y € X
be two distinct points of X. Applying Proposition BAl(i), it follows that there
is a € A such that p(a)(z) = 0, and ¢(a)(y) = 1,. Hence, a € T, and a~ € Ty,
since p(a™)(z) = (¢p(a)(x))” =0, = 1. Wegetthat 0 =a®a™ € T, VT, ie.
T,V T, = A. O =

Proposition 5.6. The following are equivalent:

(i) ¢ is completely reqular;

(i) the family (Ty)zex is strongly coprime and the topology on X is generated
by the family V(a)aea.-

Proof. (i)=-(ii) By Proposition EZ4ii), the topology on X is generated by the
family V(a)qsca. Let us prove that the family (7T,).ex is strongly coprime. Let
x € X and a € T,. Since p(A) is completely regular in (F,p, X) and V(a) is an
open neighborhood of z, there is b € A such that ¢(b)(z) = 0, and ¢(b)(y) = 1,
for all y ¢V (a). It follows that b~ € T, and b € ({7, | y € X and a ¢T,}, so
0=b0b" €T, V({T, |y € X and a ¢T,}.

(ii)=-(i) Let 2 € X and U be an open neighborhood of z. Since the topology on
X is generated by the family V(a),c 4, there is a € A such that x € V(a) C U.
We have that T, V[ \{T, | y € X and a ¢T,} = A, so there are b € T, and
ce({Ty |y € X and a ¢T},} such that b® ¢ = 0. Since c € T}, for all y € X
such that a €T, we get that ¢(c)(y) = 1, for all y ¢V (a), hence ¢(c)(y) = 1,
for all y €U, since V(a) C U. From b ® ¢ = 0 we obtain that b < ¢~ so
¢~ € Ty, because b € T, and T, is a filter of A. We get that p(c™)(x) = 1,
hence ¢(c)(z) = 0. Thus, for any z € X and any open neighborhood U of x
there is ¢ € A such that ¢(c)(xz) = 0, and ¢(c)(y) = 1, for all y ¢U. That is,
©(A) is completely regular in (F,p, X). O O

Theorem 5.7. Let A be a nontrivial BL-algebra and (Ty)zex a filter space of
A such that the subset V(a) = {x € X | a € Ty} is open in X for all a € A.
The following are equivalent:

(i) the filter space canonically determines a compact representation of A;

(i1) X is compact and the family (Ty)zex S coprime;

(i11) the family (Ty)zex is strongly coprime, the topology on X is generated by
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the family V(a)aea and any mazimal filter of A contains a filter of the filter
space.

Proof. (i)=-(ii) Obviously X is compact. Apply LemmaBEH to get that (T,).ecx
are coprime.

(ii)=-(i) Suppose that U is an open subset of X and let z € U and C = U°“.
Then, for all y € C' we have that x # y, so, by the fact that the family (T).ex
is coprime, we obtain that T, VT, = A. Hence, for all y € C, there are a¥ € T),
and oY € T, such that ¥ ® bY = 0,. It follows that (b¥)~ € T} for all y € C.
We also get that y € V(b) for all y € C, so C C U, V(b¥). Since C is
a closed subset of the compact space X, C is also compact, hence there are
Y1, Yo € C and by =¥, --- b, = b¥» € T, such that C C V(b1)U--- UV (by,).
Let b=0;V---Vb,. Thenbe T, for all y € C, so C C V(b), hence V(b)* CU.
We also have that b~ = b] A--- Ab, € T,. Let us prove that V(b~) C U. If
z € V(b7), then b~ € T,, so b €T, since T, is proper. That is, z ¢V (b), so
z € U. Thus, for any open subset U of X and any = € U, we have got b* € A
such that b® € T), for all y ¢U, (b")~ € T, and V((b")7) C U. It follows that
U =Uzep V((*)7), hence U is open in the representation topology. Thus, we
have proved that the topology on X is generated by the family V(a),ca. Let us
now prove that the family (T}),ecx is strongly coprime. Let 2 € X and a € T,
i.e. z € V(a). Applying the above construction for U = V(a), there is b € A
such that b~ € T, and b € T), for all y ¢V (a), so b€ (\{T, | y € X and a ¢T,}.
Hence, 0 =b00b" € T, V({Ty | y € X and a ¢T}}, that is, T, V({T, |y € X
and a ¢T,} = A. Apply now Proposition il and the fact that X is compact to
get (i).

(i)<(iii) Applying Theorem and Proposition B8, it follows that the filters
(T:)zex canonically determine a completely regular representation of A, ¢ :
A — T(X, F) iff the family (T,,).cx is strongly coprime and the topology on X
is generated by the family V(a)qea. Now, applying The compactness theorem
we obtain that the representation ¢ is compact iff ¢(A) is compact in (F,p, X)
iff every maximal filter of ¢(A) is fixed. Applying now Lemma E0(i) and the
fact that A = ¢(A), we get that every maximal filter of p(A) is fixed iff any
maximal filter of A contains a filter T, for some x € X. O O

Applying Theorem BT we prove the existence of a compact representation
for any nontrivial BL-algebra A.

Proposition 5.8. The family (O(M))nrenraz(a) canonically determines a com-
pact representation of A.

Proof. We have that Maxz(A) is compact and Hausdorff and, applying Proposi-
tions ZTR(ii) and LT, it follows that the family (O(M))arenax(a) is coprime.
It remains to prove that V(a) = {M € Max(A) | a € O(M)} is open in Maz(A)
for all a € A. Let M € V(a). Then a € O(M), so there is b ¢M such that
aVb=1.If N € d(b), then b ¢N and aVb=1,s0a € O(N), that is N € V(a).
Hence, M € d(b) C V(a), so V(a) is open. O O
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Let (Fa,pa, Maz(A)) be the BL-sheaf space and ¢ : A — T'(Max(A), Fa)
the compact representation determined by the family (O(M))arenraz(a). Then
(Fa)y = AJO(M) for all M € Max(A), pa : Fa — Max(A) is the canonical
projection and ¢(a) = [a] for all a € A, where [a] € T'(Maxz(A), Fa) is defined
by [a](M) = a/O(M) for all M € Maz(A).

Since, by Proposition ZT(iii), A/O(M) is a local BL-algebra, as a consequence
of the above proposition and Proposition 1], we get the following result.

Corollary 5.9. [25]
Any non-trivial BL-algebra A is isomorphic with a subdirect product of local
BL-algebras.

Proposition 5.10. ¢ : A = T'(Max(A), Fa).

Proof. We have to prove that ¢(A) = I'(Max(A),Fa). Since ¢(A) is com-
pact in (Fa,pa, Max(A)), by Proposition B3, it is sufficient to show that ev-
ery global section is locally in p(A). Let o € I'(Max(A), Fa). Then for all
M € Max(A), o(M) € A/O(M), so there is apy € A such that o(M) =
an/OM) = lam|(M) = planm) (M), so M € [0 = p(an)]. Thus, there is a fam-
ily (aar)aremax(a) of elements of A and a family (Uns = [0 = p(anr)]) mremaz(a)
of open sets of Max(A) such that o|y,, = v(anm)|v,, for all M € Maxz(A). That
is, o is locally in ¢(A). O O

Example 5.11. Let us consider the case when BL-algebra A is the interval [0, 1]
endowed with the structure induced by a continuous t-norm. Since A is a BL-
chain, we get from Proposition [Z13 that A is local, so A has a unique mazximal
filter M. Hence, Max(A) = {M} and it is easy to see that O(M) = {1},
so AJOM) = A/{1} =2 A. Thus, the associated BL-sheaf space is (Fa =
[0,1],pa, Max(A) = {M}), where pa : [0,1] — {M}, pa(a) = M. For all
a € [0,1], we have that [a] : {M} — [0,1] is defined by [a](M) = a, so by the
construction before Theorem [E3, it follows that the topology on Fa = [0,1] is
the discrete topology.

6 The equivalence between BL-algebras and
compact local BL-sheaf spaces

Let us denote by C'L — BL — ShSp the full subcategory of BL — ShSp whose
objects are compact local BL-sheaf spaces. By Proposition B there is a sec-
tion functor S : BL — ShSp — BL. Then, by composing & with the inclusion
functor, we get a functor from CL — BL — ShSp to BL, denoted by S, too.
In the sequel, we shall define a functor 7 : BL — CL— BL — ShSp and we shall
prove that the functors S, 7 determine an equivalence between CL— BL—ShSp
and BL.

For any nontrivial BL-algebra A, let us define 7(A) = (Fa,pa, Max(A)). By
the previous section, (Fa,pa, Max(A)) is a compact BL-sheaf space. For any
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M € Max(A), we have that the stalk at M is (Fa)u = A/O(M). By Proposi-
tion EETR(iii), A/O(M) is a local BL-algebra, so (Fa,pa, Max(A)) is a compact
local BL-sheaf space.

Let A and B be nontrivial BL-algebras and h : A — B a BL-morphism. If M is
a maximal filter of B, then h~1(M) is a maximal filter of A, by Proposition 22Tk
Let us define h : Maz(B) — Max(A) by (h)(M) = h='(M) for any maximal
filter M of B.

Proposition 6.1. Let h : Maxz(B) — Max(A) be the function defined above.
Then

(i) O(h(M)) C h='(O(M)) C h(M) for any mazimal filter M of B;

(i1) h is continuous.

Proof. (i) Let a € O(h(M)), so there is b ¢h(M) such that a Vb = 1. Tt fol-
lows that h(a) V h(b) = 1 and h(b) €M, since b ¢h=*(M). That is, h(a) €
O(M), hence a € h™1(O(M)). By Proposition ZT%i), O(M) C M, hence
h=YH(O(M)) C h=Y(M) = h(M).

(ii) Let M € Maxz(B) and V be an open neighborhood of h(M). We shall
prove that there is an open neighborhood U of M such that h(U) C V, hence
h is continuous at M. Since ¢ : A — (Fa,pa, Maxz(A)) is a completely regu-
lar representation of A, there is a € A such that ¢(a)(h(M)) = 0/O(h(M))
and p(a)(N) = 1/O(N) for all N¢V. Hence, a/O(h(M)) = 0/O(h(M))
and a/O(N) = 1/O(N) for all N¢V. Applying Proposition 7, we get that
a” € O(h(M) and a € O(N) for all N¢ V. Since O(h(M)) C h(M), we have
that a= € h(M) and from the fact that h(M) is a maximal filter of A, it follows
that a¢ h(M), hence h(a)¢ M. Thus, we have obtained that M is an element
of the basic open set U = d(h(a)) of Maxz(B). Let us prove that h(U) C V.
Suppose that there is P € U such that h(P)¢V. From h(P)¢V, it follows that
a € O(h(P)), so, by(i), a € h(P), that is h(a) € P. This contradicts the fact

that P € U. Thus, h(U) C V. O O

Let (E_l(FA), ga, Maxz(B)) be the BL-sheaf space induced by the function
h : Max(B) — Max(A) and (Fa,pa, Maz(A)) and i : Fy — Eil(FA) the
canonical morphism over h. Since h : Max(B) — Maxz(A) is continuous, we
get that (h,4) : (Fa,pa, Maz(A)) — (ﬁ_l(FA),qA,Max(B)) is a morphism of
BL-sheaf spaces.
Proposition 6.2. For any mazimal filler M € Max(B), let us define ¥y :
1 —
(h(Fa))u = (F)ar, by ar(M,a/O((M))) = h(a)/O(M) for any a € A.
Then (1ntaw(g),¥) : (b (Fa),qa, Maz(B)) — (Fp,ps, Maxz(B)) is a mor-
phism of BL-sheaf spaces.

Proof. Firstly, let us prove that vy, is well-defined. Let a,b € A such that
a/O(h(M)) = b/O(h(M)). Tt follows that (a — b) ® (b — a) € O(h(M)), that
is (a = b) ® (b — a) € h"1(O(M)), so (h(a) — k(b)) ® (h(b) — h(a)) € O(M).
Thus, h(a)/O(M) = h(b)/O(M). Now, we shall apply Proposition B2l to get
that (1p7az(B), %) is @ morphism of BL-sheaf spaces. By the definition of 1, it
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follows immediately that pp ot = ga and that 5 : {M} x A/O(R(M)) —
B/O(M) is a BL-morphism for all M € Maxz(B). It remains to prove that ¢
is continuous. By Proposition Bvi), it is sufficient to prove that v is open.
Since the family {d(a) | a € A} is a basis for Maxz(A), by Proposition BIiv),
Proposition 10, it follows that a basis for the topology of F4 is the family
{lc](d(a)) | a,c € A}. We get that a basis for E_l(FA) is the family {(d(b)
[c](d(a))) N Eil(A) | a,c€ A, be B}. A basic open set in Eil(A) is (d(b)
——1 — —
[c](d(a))) N h (A) = {(M,c/O(h(M))) | M € Max(B),b ¢§M,a ¢h(M)}
{(M,c/O(h(M))) | M € Max(B),bgM,h(a)gM}, where a,c € A, b €
It follows that ¥ ((d(b) x [¢](d(a))) N Eil(A)) = {(M,c/O(h(M))) | M
Max(B), b @M, h(a) §M} = {h(c)/O(M) | M € Max(E),bgM,h{a) M}
[h(e)](d(b) Nd(h(a))), which is open in Fp. Hence, 9 is open. O

X
X

Onm S

Hence, for a BL-morphism h : A — B, we have got the morphisms of BL-
Sheafspaces (Ev Z) : (FAapAv MCL{E(A)) - (E_l(FA)a qA, MCLI(B)) and (lMa;E(B)v 1/’) :
—1
(ﬁ (FA)_,qA,Ma:E(B)) — (Fp,pp, Max(B)). We define T (h) = (1p142(B), %) ©
(h,i) = (h,ap) : T(A) — T(B), where ap, = ¢ oi.
Thus, we completed the definition of the functor 7 : BL — CL — BL — ShSp.

22



Proposition 6.3. So7 X 1p,.

Proof. For any BL-algebra A, we have that (So7T)(A) = T'(Maxz(A), Fa) and
for any BL-morphism h : A — B, (SoT)(h) = S(h,an) = oy, where apy :
I'Max(A),Fa) — I'(Max(B), Fp) is the BL-morphism induced by «aj. By
Proposition BI0, we have an isomorphism ¢4 : A & I'(Maxz(A), Fa) for any
non-trivial BL-algebra A. Let us prove that ¢ = (va)acopr) : 1L = SoT isa
natural transformation. For any a € A and M € Max(B), we have that ((ax o
pa)(a)(M) = ((ang)lal)(M) = (an)([a](h(M))) = (ann)(a/O(h(M))) =
ha)/O(M) and ((pp o h)(a))(M) = [h(a)](M) = h(a)/O(M). Thus, (S o
T)(h)owa = ppoh. Hence, ¢ : 1, =2 So7 is a natural isomorphism. O O

Proposition 6.4. 7 oS = 1cr_Br—shsp-

Proof. Let (F,p,X) be a compact local BL-sheaf space and A = T'(X, F).
Then (7 o S)(F,p,X) = T(A) = (Fa,pa, Max(A)). Let n : X — Max(A)
the function that associates with any x € X the unique maximal filter M of
A such that K, € M. By Proposition EET7, n is a homeomorphism. Let
x € X and M = n(z), so m(M) = z. Then, by Proposition EET2 we get that
O(M) = K, that is O(n(z)) = K,. Applying now Proposition EZ(iv), it
follows that A/O(n(x)) = F,. If a, : A/O(n(z)) — F, is this isomorphism,
then ay(0/O(n(x))) = o(x) for all o € A. Let us prove that o : Fy — F is a
morphism over n. Let D be an open subset of Maz(A) and t € T'(D, Fy). We
have to prove that the function ag (t) : n=Y(D) — F, defined by ag t)(z) =
az(t(n(z))) for any x € n~!(D), is continuous. Since (Fa,pa, Maz(A)) is
compact and ¢ is a section over an open subset D of Max(A), we can apply
Proposition (i) to get an open covering (D;);c; of D and a family (¢;)ier
of sections from I'(Max(A), Fa) such that ¢|p, = t;|p, for all ¢ € I. Apply-
ing now Proposition BEI0, we obtain a family (o;);er of sections from I'(X, F')
such that t; = [0;] for all i € I. Let € n~!(D), that is n(z) € D. Then,
there is k € I such that n(z) € Dy, so t(n(z)) = [ox](n(z)) = 01/O(n(x)).
It follows that ag(t)( x) = ag(or/O(n(x))) = ak( ). Let V. C F be an open
neighborhood of o4 (z) and U = n=*(Dy) N o, (V). Then U C n~(D) is an
open neighborhood of z. If y € U, then n(y) 6 Dy, and oy (y) € V. It follows
that t(n(y)) = ox/O(n(y)), hence a#( (y) = ok(y) € V. Thus, aZ(t)(U) C V.
Hence, we have proved that for any x € n=!(U) and for any open neighborhood
V of ai (t)(z) there is an open neighborhood U of = such that ag ®(U) CV.
That is, ag (t) is continuous.

Hence, (n,«) : (Fa,pa, Max(A)) — (F,p,X) is an isomorphism of BL-sheaf
spaces. Let A : 7 oS — lor_Br—snsp, Where (g x) = (n,a). It remains to
prove that X is a natural transformation. Let (f,8) : (F,p,X) — (G,q,Y)
be a morphism of BL-sheaf spaces, A = T'(X,F) and B = T'(Y,G). Let
AFp.x) = (M1,01), N@G,q,y) = (n2,a2). We have that (7 o S)(f, 3) = (8%, 0),
where By : A — B, fx(o)(y) = By(o(f(y))) for all 0 € Aand y € Y,
By : Max(B) — Max(A) , Bg(M) = (B4) (M), and

0 = (Bar)nrerrastmy: Ot + AJO(FE(M)) — BJO(M), 0a1(o/ (T (M))) = i)/ O(M)
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for all o € A. We have to prove that (f,) o (n1,a1) = (nz2,az) o (Bg,0),
that is (ny o f,80 a1) = (Bz omng,az06). Let y € Y. If 0 € Ky,
then o(f(y)) = 1), hence By(o)(y) = By(o(f(¥) = By(l)) = 1y, s0
Byu(o) € Ky C na(y), that is o € (84) ' (n2(y)) = Bx(nz(y)). Thus, we have
proved that 54 (nz2(y)) is a maximal filter of A that contains K'¢(,y. But ny(f(y))
is the unique maximal filter of A that contains Ky(,). Hence, we must have
(By#) *(n2(y)) = n1(f(y)). Let us prove now that foa; = azof. Let y € Y
and o € A. Then (50 a1),(o/0(m1(f(1)) = 6,(o(f (1)) = B(0)(y), and
(a2 00)y(0/O(Bx(n2(y)))) = (a2)y(B(0)/O(n2(y))) = Bylo)(y). O O

Thus, we have got

Theorem 6.5. The functors S : CL — BL — ShSp — BL and 7 : BL —
CL — BL — ShSp establish an equivalence between the category of nontrivial
BL-algebras and the category of compact local BL-sheaf spaces.

As a consequence, we get the corresponding result for MV-algebras.

Corollary 6.6. [

The functor from the category of compact local MV-sheaf spaces to the category
of montrivial MV-algebras, obtained by assigning to each compact local MV-sheaf
space the MV-algebra of global sections, determines an equivalence between these
categories.
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