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Abstract

In this paper we define sheaf spaces of BL-algebras (or BL-sheaf spaces),
we study completely regular and compact BL-sheaf spaces and compact
representations of BL-algebras and, finally, we prove that the category of
non-trivial BL-algebras is equivalent with the category of compact local
BL-sheaf spaces.

1 Introduction

BL-algebras are the algebraic structures for Hájek’s Basic Logic [13]. The main
example of a BL-algebra is the interval [0,1] endowed with the structure induced
by a continuous t-norm.
In this paper we study compact representations of BL-algebras, following tech-
niques used for ringed spaces by Mulvey [17, 16, 18]. In [16], Mulvey extended
the concepts of complete regularity and compactness from topological spaces to
ringed spaces and proved a compactness theorem for completely regular ringed
spaces generalizing the Gelfand-Kolmogoroff criterion concerning maximal ide-
als in the ring R(X) of continuous real functions on a completely regular space
X [10]. In [17], Mulvey introduced compact representations of rings, showing
that they are exactly those representations of rings that establish an equivalence
of categories of modules. Using compact representations, Mulvey extended the
Gelfand duality between the categories of compact spaces and commutative C∗-
algebras to Gelfand rings [18].
Gelfand rings are characterized by a property that can be formulated in terms of
universal algebra, namely that each prime ideal is contained in a unique maximal
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ideal. Universal algebras with this property and their Gelfand representations
were studied by Georgescu and Voiculescu [12] and, in a lattice-theoretical set-
ting, by Simmons [21].
MV-algebras [3], lattice-ordered groups [1], and BL-algebras are classes of al-
gebras that also satisfy this property. Hence, the problem of obtaining similar
results for these structures is natural. Some sheaf representations for lattice-
ordered groups are studied in [14]. Filipoiu and Georgescu [9] proved that the
category of MV-algebras is equivalent with the category of compact sheaf spaces
of MV-algebras with local stalks.
In the present paper, we give an answer for this problem in the case of BL-
algebras. In different classes of problems, sheaf representations of universal
algebras are very useful since they reduce the study of algebras to the study of
the stalks, which usually have a better known structure. In the case of our com-
pact representations, the stalks are local BL-algebras, introduced and studied
by Turunen and Sessa [25].
In the first section of the paper we recall some facts about BL-algebras and we
study some special filters of BL-algebras, used in the sequel. In Section 2, we
define sheaf spaces of BL-algebras (or BL-sheaf spaces), BL-algebras of global
sections, morphisms of BL-sheaf spaces and other notions related with sheaf
theory.
In the next section we define and study completely regular and compact BL-
sheaf spaces and we prove the compactness theorem.
In the following section we remind some general results concerning sheaf repre-
sentations of BL-algebras and we study a special kind of representations, namely
compact representations. We prove that any compact representation of a BL-
algebra arises canonically from a family of filters of the BL-algebra satisfying
certain conditions.
Finally, in the last section of the paper we prove that the functor from the
category of compact local BL-sheaf spaces to the category of non-trivial BL-
algebras, obtained by assigning to each BL-sheaf space the BL-algebra of global
sections determines an equivalence between these categories.

2 BL-algebras. Definitions and first properties

A BL-algebra [13] is an algebra (A,∧,∨,⊙,→, 0, 1) with four binary operations
∧,∨,⊙,→ and two constants 0, 1 such that:
(i) (A,∧,∨, 0, 1) is a bounded lattice;
(ii) (A,⊙, 1) is a commutative monoid;
(iii) ⊙ and → form an adjoint pair, i.e.

c ≤ a→ b iff a⊙ c ≤ b for all a, b, c ∈ A;
(iv) a ∧ b = a⊙ (a→ b);
(v) (a→ b) ∨ (b→ a) = 1.
A BL-algebra A is nontrivial iff 0 6= 1.
For any BL-algebraA, the reduct L(A) = (A,∧,∨, 0, 1) is a bounded distributive
lattice.
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A BL-chain is a linear BL-algebra, i.e. a BL-algebra such that its lattice order
is total.
For any a ∈ A, we define a− = a → 0. We denote the set of natural numbers
by ω. We define a0 = 1 and an = an−1 ⊙ a for n ∈ ω−{0}. The order of a ∈ A,
in symbols ord(a), is the smallest n ∈ ω such that an = 0. If no such n exists,
then ord(a) = ∞.
The following properties hold in any BL-algebraA and will be used in the sequel:
(1.1) a⊙ b ≤ a ∧ b ≤ a, b
(1.2) a ≤ b implies a⊙ c ≤ b⊙ c
(1.3) 0 → a = 1 and 1 → a = a
(1.4) a→ b = 1 iff a ≤ b
(1.5) a⊙ b = 0 iff a ≤ b−

(1.6) a⊙ a− = 0
(1.7) a→ (b→ c) = (a⊙ b) → c
(1.8) (a ∧ b)− = a− ∨ b− and (a ∨ b)− = a− ∧ b−

(1.9) 1− = 0 and 0− = 1
(1.10) a− = 1 iff a = 0
(1.11) a ∨ b = 1 implies an ∨ bn = 1 for any n ∈ ω

Let A be a BL-algebra. A filter of A is a nonempty set F ⊆ A such that for all
a, b ∈ A,
(i) a, b ∈ F implies a⊙ b ∈ F ;
(ii) a ∈ F and a ≤ b imply b ∈ F .
A filter F of A is proper iff F 6= A.
By (1.1) it is obvious that any filter of A is also a filter of the lattice L(A). A
proper filter P of A is called prime provided that it is prime as a filter of L(A):

a ∨ b ∈ P implies a ∈ P or b ∈ P.
A proper filter M of A is called maximal (or ultrafilter) if it is not contained in
any other proper filter.
We shall denote by Spec(A) the set of prime filters of A and by Max(A) the
set of maximal filters of A. Let us remind some properties of filters that will be
used in the sequel.

Proposition 2.1. [24, Proposition 8]
If A is a nontrivial BL-algebra, then any proper filter of A can be extended to a
maximal filter.

Proposition 2.2. [24, Proposition 6]
Let P be a prime filter of a nontrivial BL-algebra A. Then the set

F = {F | P ⊆ F and F is a proper filter of A}
is linearly ordered with respect to set-theoretical inclusion.

Proposition 2.3. [8, Proposition 1.6]
If A is a nontrivial BL-algebra, then any prime filter of A is contained in a
unique maximal filter.

Proposition 2.4. [24, Proposition 7]
Any maximal filter of A is a prime filter of A.
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Let X ⊆ A. The filter of A generated by X will be denoted by < X >.
We have that < ∅ >= {1} and < X >= {a ∈ A | x1 ⊙ · · · ⊙ xn ≤ a for some
n ∈ ω − {0} and some x1, · · · , xn ∈ X} if ∅ 6= X ⊆ A. For any a ∈ A, < a >
denotes the principal filter ofA generated by {a}. Then, < a >= {b ∈ A | an ≤ b
for some n ∈ ω − {0}}.

Lemma 2.5. Let F,G be filters of A. Then
< F ∪G >= {a ∈ A | b⊙ c ≤ a for some b ∈ F , c ∈ G}

Proposition 2.6. Let F(A) be the set of filters of A. Then (F(A),⊆) is a
complete lattice. For every family {Fi}i∈I of filters of A, we have that

∧i∈IFi = ∩i∈IFi and ∨i∈IFi =< ∪i∈IFi > .

With any filter F of A we can associate a congruence relation ∼F on A by
defining

a ∼F b iff a→ b ∈ F and b→ a ∈ F iff (a→ b) ⊙ (b→ a) ∈ F .
For any a ∈ A, let a/F be the equivalence class a/ ∼F . If we denote by A/F the
quotient set A/∼F

, then A/F becomes a BL-algebra with the natural operations
induced from those of A.

Proposition 2.7. [13]
Let F be a filter of A and a, b ∈ A.
(i) a/F = 1/F iff a ∈ F ;
(ii) a/F = 0/F iff a− ∈ F ;
(iii) for all a, b ∈ A,

a/F ≤ b/F iff a→ b ∈ F ;
(iv) A/F is a BL-chain iff F is prime.

If h : A → B is a BL-morphism, then the kernel of h is the set Ker(h) =
{a ∈ A | h(a) = 1}. It is easy to see that

Proposition 2.8. Let h : A→ B be a BL-morphism. If G is a (proper, prime)
filter of B, then h−1(G) is a (proper, prime) filter of A. Thus, in particular,
Ker(h) is a proper filter of A.

Lemma 2.9. [7, Proposition 1.13]
Let A be a nontrivial BL-algebra and M a proper filter of A. The following are
equivalent:
(i) M is maximal;
(ii) for any x ∈ A,

x ∈/M implies (xn)− ∈M for some n ∈ ω.

Proposition 2.10. Let h : A→ B be a BL-morphism. If N is a maximal filter
of B, then h−1(N) is a maximal filter of A.

Proof. By Proposition 2.8, we have that h−1(N) is a proper filter of A. In order
to get that it is maximal, we shall apply Lemma 2.9. Let x ∈ A such that
x ∈/h−1(N), hence h(x) ∈/N . Since N is a maximal filter of B, there is n ∈ ω
such that (h(x)n)− ∈ N , that is h((xn)−) ∈ N , since h is a homomorphism of
BL-algebras. We have got that (xn)− ∈ h−1(N).
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For any filter F of A, let us denote by []F the natural homomorphism from
A onto A/F , defined by []F (a) = a/F for any a ∈ A. Then F = Ker([]F ).

Proposition 2.11. [11, Proposition 1.12]
Let A be a BL-algebra and F a filter of A.
(i) the map G

α
7→ []F (G) is an inclusion-preserving bijective correspondence

between the filters of A containing F and the filters of A/F . The inverse map
is also inclusion-preserving;
(ii) G is a proper filter of A containing F iff []F (G) is a proper filter of A/F .
Hence, there is a bijection between the proper filters of A containing F and the
proper filters of A/F ;
(iii) there is a bijection between the maximal filters of A containing F and the
maximal filters of A/F .

Following [25], a BL-algebra A is local if it has a unique maximal filter.

Proposition 2.12. [25]
Let A be a local BL-algebra. Then its unique maximal filter is

{a ∈ A | ord(a) = ∞}.

Proposition 2.13. [25]
Any BL-chain is a local BL-algebra.

Proposition 2.14. Let P be a proper filter of A. The following are equivalent:
(i) A/P is a local BL-algebra;
(ii) P is contained in a unique maximal filter of A.

Proof. Apply [11, Proposition 2.6 ], and [11, Proposition 2.8 ].

Let A be a nontrivial BL-algebra. The prime spectrum ofA is the set Spec(A)
of prime filters of A, endowed with the Zariski topology, of which the subsets of
the form

D(a) = {P ∈ Spec(A) | a ∈/P} for a ∈ A
form a basis of open sets.
The maximal spectrum of A is the subspace Max(A) of Spec(A) consisting of
the maximal filters of A with the induced topology. The subsets

d(a) = D(a) ∩Max(A) = {M ∈Max(A) | a ∈/M}, a ∈ A
form a basis for the topology of the maximal spectrum. Then Spec(A) is a
compact topological space and Max(A) is compact and Hausdorff [15].

In the sequel, we shall remind some facts concerning the reticulation of a BL-
algebra A. For details see [15].
Let us define a binary relation ≡ on A by

a ≡ b iff D(a) = D(b).
Then ≡ is an equivalence relation on A compatible with the operations ⊙,∧
and ∨. For a ∈ A let us denote by [a] the class of a ∈ A with respect to ≡. The
bounded distributive lattice β(A) = (A/≡,∨,∧, [0], [1]) is called the reticulation
of the BL-algebra A.
If h : A → B is a homomorphism of BL-algebras, then β(h) : β(A) → β(B),
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defined by β(h)([a]) = [h(a)], is a homomorphism of bounded distributive lat-
tices. It follows that we can define a functor β from the category of nontrivial
BL-algebras to the category of bounded distributive lattices. The functor β is
called the reticulation functor.
If F is a filter of A, then β(F ) = {[a] | a ∈ A} is a filter of the lattice β(A) and
the mapping F 7→ β(F ) is an isomorphism between the lattice F(A) of filters
of A and the lattice F(β(A)) of filters of β(A). If P ∈ Spec(A), then β(P ) is a
prime filter of β(A) and the mapping P 7→ β(P ) is a homeomorphism between
Spec(A) and Spec(β(A)). Similarly, Max(A) is homeomorphic to Max(β(A)).

Let us remind that a bounded distributive lattice L is called normal [26, 4] if
each prime ideal of L contains a unique minimal prime ideal.

Proposition 2.15. [15, Proposition 3.14]
For any nontrivial BL-algebra A, β(A) is a normal lattice.

To any prime filter P of a bounded distributive lattice or a BL-algebra A we
associate the set

O(P ) = {a ∈ A | a ∨ b = 1 for some b ∈/P}.

Then it is easy to see that O(P ) is a proper filter of A such that O(P ) ⊆ P .
We have the following characterization of normal lattices

Proposition 2.16. [19, Theorem 3]
Let L be a bounded distributive lattice. The following are equivalent:
(i) L is normal;
(ii) for any maximal filter M of L, M is the unique maximal filter that contains
O(M).

Lemma 2.17. For any maximal filter M of A,
β(O(M)) = O(β(M)).

Proof. In the proof, we use that for all a ∈ A, [a] = [1] iff a = 1 and for each
maximal filter M of A, a ∈M iff [a] ∈ β(M) [15].
“⊆” Let [a] ∈ β(O(M)), so there is b ∈ O(M) such that [a] = [b]. Since
b ∈ O(M), there is c ∈/M such that b∨c = 1. It follows that [a]∨[c] = [b]∨[c] = [1]
and [c] ∈/β(M). Hence, [a] ∈ O(β(M)).
“⊇” If [a] ∈ O(β(M)), then there is [b] ∈/β(M) such that [a] ∨ [b] = [1]. Hence,
there is b ∈/M such that a∨ b = 1, that is a ∈ O(M), so [a] ∈ β(O(M)).

Proposition 2.18. Let A be a nontrivial BL-algebra. Then
(i) for any maximal filter M of A, M is the unique maximal filter that contains
O(M);
(ii) for any distinct maximal filters M,N of A, O(M) ∨O(N) = A;
(iii) A/O(M) is local for any M ∈Max(A).

Proof. (i) Apply Proposition 2.16, Lemma 2.17 and the properties of the retic-
ulation of A.
(ii) Suppose that O(M)∨O(N) is a proper filter of A. Then, using Proposition
2.1, we get a contradiction to (i).
(iii) Apply (i) and Proposition 2.14.
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Proposition 2.19. [6, Proposition 4.36]
Let A be a nontrivial BL-algebra. Then⋂

M∈Max(A) O(M) = {1}.

3 BL-sheaf spaces. Definitions and first proper-

ties

A sheaf space of BL-algebras (or a BL-sheaf space) is a triple (F, p,X) such that
the following properties are satisfied:
(i) F and X are topological spaces;
(ii) p : F → X is a local homeomorphism from F onto X;
(iii) for each x ∈ X , p−1({x}) = Fx is a nontrivial BL-algebra with operations
denoted by ∨x,∧x,⊙x,→x, 0x, 1x;
(iv) the functions (a, b) 7→ a∨x b, (a, b) 7→ a∧x b, (a, b) 7→ a⊙x b, (a, b) 7→ a→x b
from the set {(a, b) ∈ F × F | p(a) = p(b)} into F are continuous, where
x = p(a) = p(b);
(v) the functions 0, 1 : X → F , which assign to each x in X the zero 0x and the
unit 1x of Fx respectively, are continuous.

X is known as the base space, F as the total space and Fx is called the stalk of
F at x ∈ X .
If Y ⊆ X , then a section σ over Y is a continuous map σ : Y → F satisfying
(p ◦σ)(y) = y for all y ∈ Y . The set of all sections over Y form a nontrivial BL-
algebra with the operations defined pointwise, that will be denoted by Γ(Y, F ).
The elements of Γ(X,F ) are called global sections.
For every σ, τ ∈ Γ(Y, F ), we shall use the following notation:

[σ = τ ] = {y ∈ Y | σ(y) = τ(y)}.
A BL-sheaf space (F, p,X) is called local if for each x ∈ X the stalk Fx is a local
BL-algebra.
We shall use the expression a BL-algebra of global sections to refer to any BL-
subalgebra of Γ(X,F ). If A is a BL-algebra of global sections, then for each
x ∈ X , we define pA

x : A → Fx by pA
x (σ) = σ(x) for all σ ∈ A. If A = Γ(X,F ),

then we shall denote pA
x by px.

The following properties are well-known and will be used in the sequel. For
details see [23, 5, 22].

Proposition 3.1. Let (F, p,X) be a BL-sheaf space.
(i) for any Y ⊆ X and σ, τ ∈ Γ(Y, F ), the subset [σ = τ ] is open in Y ;
(ii) for each a ∈ F there are an open subset U of X and a section σ ∈ Γ(U,F )
such that p(a) ∈ U and σ(p(a)) = a;
(iii) if Z ⊆ Y ⊆ X and σ ∈ Γ(Y, F ), then σ|Z ∈ Γ(Z,F );
(iv) the family {σ(U) | U is open in X,σ ∈ Γ(U,F )} is a basis for the topology
of F ;
(v) if A is a BL-algebra of global sections, then pA

x is a BL-morphism for each
x ∈ X;
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(vi) if (F, p,X) and (G, q,X) are BL-sheaf spaces and f : F → G such that
q ◦ f = p, then

f is continuous iff f is open iff f is a local homeomorphism.

If A is a BL-algebra of global sections, U is an open subset of X and σ is a
section over U , we say that σ is locally in the BL-algebra of global sections A if

(*) there are an open covering (Ui)i∈I of U and a family (σi)i∈I of elements of
A such that σ|Ui

= σi|Ui
for all i ∈ I.

The following lemma follows immediately from Proposition 3.1(iv).

Lemma 3.2. Let (F, p,X) be a BL-sheaf space and A a BL-algebra of global
sections such that every section over an open subset of X is locally in the BL-
algebra A. Then the family {σ(U) | U is open in X, σ ∈ A} is a basis for the
topology of F .

Proposition 3.3. Let (F, p,X) be a BL-sheaf space and A a BL-algebra of
global sections. The following are equivalent:
(i) every section over an open subset of X is locally in the BL-algebra A;
(ii) for each x ∈ X, the BL-morphism pA

x is onto.

Proof. (i)⇒(ii) Let x ∈ X and a ∈ Fx, that is a ∈ F such that p(a) = x.
Applying Proposition 3.1(ii), there is an open neighborhood U of x and a section
σ over U such that σ(x) = a. By (i), we get an open covering (Ui)i∈I of U and
a family (σi)i∈I of sections from A such that σ|Ui

= σi|Ui
for all i ∈ I. Since

x ∈ U , we have that x ∈ Uk for some k ∈ I. It follows that σk(x) = σ(x) = a.
Hence, we have got σk ∈ A such that pA

x (σk) = a. That is, pA
x is onto.

(ii)⇒(i) Let U be an open subset of X and σ a section over U . For each x ∈ U ,
we have that σ(x) ∈ Fx, hence, by (ii), there is τx ∈ A such that τx(x) = σ(x).
Applying Proposition 3.1(iii) and (i), it follows that τx|U ∈ Γ(U,F ) and the
subset Ux = [τx|U = σ] is an open subset of U such that x ∈ Ux. Thus, we
have got an open covering (Ux)x∈U of U and a family (τx)x∈U of sections from
A such that τx|Ux

= (τx|U )|Ux
= σ|Ux

for all x ∈ U .

Let (F, p,X) be a BL-sheaf space and σ ∈ Γ(Y, F ) a section over Y ⊆ X .
The cosupport of σ, cosupp(σ), is the closed hull in the subspace Y of the set of
those points x ∈ Y for which σ(x) 6= 1x:

cosupp(σ) = {x ∈ Y | σ(x) 6= 1x}.
It is easy to see that (cosupp(σ))c = [σ = 1|Y ].

Let X and Y be topological spaces and f : Y → X a continuous function. Let
(F, p,X) and (G, q, Y ) be two BL-sheaf spaces. A morphism α : F → G over
f is a family (αy : Ff(y) → Gy)y∈Y of BL-morphisms satisfying the following
condition:

If U is open in X and σ ∈ Γ(U,F ), define β : f−1(U) → G by
β(y) = αy(σ(f(y))).

Then β is continuous, and therefore β ∈ Γ(f−1(U), G).
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We shall write β = αU
#(σ).

It follows that a morphism α : F → G over f induces a BL-morphism αU
# :

Γ(U,F ) → Γ(f−1(U), G) for all open U in X . We shall denote αX
# by α#. Since

f−1(X) = Y , α# is a BL-morphism between the BL-algebras of global sections
Γ(X,F ) and Γ(Y,G).
An example of a morphism over f is given by the canonical mapping from a
BL-sheaf space (F, p,X) to the BL-sheaf space (f−1(F ), q, Y ), induced by f and
(F, p,X), defined as follows.
Define f−1(F ) = {(y, a) ∈ Y × F | f(y) = p(a)} =

⋃
y∈Y {y} × Ff(y) and

q : f−1(F ) → Y by q(y, a) = y. Then for all y ∈ Y , f−1(F )y = {y}×Ff(y). For
each y ∈ Y , define iy : Ff(y) → f−1(F )y by iy(a) = (y, a). We get easily that iy
is a bijection. We make f−1(F )y a BL-algebra by transporting the BL-structure
of Ff(y) to f−1(F )y by means of iy.
Thus, we have got a BL-sheaf space (f−1(F ), q, Y ) and a morphism i : F →
f−1(F ) over f , where i is the family (iy)y∈Y .

A morphism of BL-sheaf spaces (f, α) : (F, p,X) → (G, q, Y ) consists of a con-
tinuous function f : Y → X and a morphism α : F → G over f .
An isomorphism of BL-sheaf spaces is a morphism (f, α) such that f is a home-
omorphism and αy is an isomorphism of BL-algebras for all y ∈ Y .
If (f, α) : (F, p,X) → (G, q, Y ) and (g, β) : (G, q, Y ) → (H, r, Z) are two mor-
phisms of BL-sheaf spaces, then their composition is the morphism (f ◦g, β◦α),
where (β ◦ α)z = βz ◦ αg(z) for all z ∈ Z.

Let (F, p,X) and (G, q,X) be BL-sheaf spaces over the same topological space
X . If (αx : Fx → Gx)x∈X is a family of functions, then we can define a func-
tion α : F → G by α(a) = αx(a), where x ∈ X is unique such that a ∈ Fx.
Conversely, a function α : F → G can be seen as a family (αx : Fx → Gx)x∈X ,
where αx = α | Fx for all x ∈ X .

Proposition 3.4. (1X , α) : (F, p,X) → (G, q,X) is a morphism of BL-sheaf
spaces iff α : F → G is a continuous function such that q ◦α = p and αx : Fx →
Gx is a BL-morphism for all x ∈ X.

We shall denote by BL the category of nontrivial BL-algebras and BL-
morphisms and by BL− ShSp the category of BL-sheaf spaces and morphisms
of BL-sheaf spaces.
Define S(F, p,X) = Γ(X,F ) for any BL-sheaf space (F, p,X) and S(f, α) = α#

for every morphism (f, α) : (F, p,X) → (G, q, Y ). Then

Proposition 3.5. S : BL−ShSp→ BL is a functor, called the section functor.

4 Compact BL-sheaf spaces

Throughout, BL-algebras are nontrivial and X will be assumed to denote a
Hausdorff topological space.
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A BL-sheaf space (F, p,X) is called completely regular if it satisfies the following:

(CR) for each x ∈ X and closed set C ⊆ X not containing x, there is σ ∈
Γ(X,F ) such that σ(x) = 0x and σ|C = 1|C.

A completely regular BL-sheaf space (F, p,X) is called compact if the topological
space X is compact.

The following lemma gives equivalent characterizations of completely regular
BL-sheaf spaces.

Lemma 4.1. Let (F, p,X) be a BL-sheaf space. The following are equivalent:
(i) (F, p,X) is completely regular;
(ii) for each x ∈ X and every open neighborhood U of x there is σ ∈ Γ(X,F )
such that σ(x) = 0x and σ(y) = 1y for all y ∈/U ;
(iii) for each x ∈ X and every open neighborhood U of x there is σ ∈ Γ(X,F )
such that σ(x) = 0x and cosupp(σ) ⊆ U .

Proof. (i)⇒(ii) Let C = U c. Then C is a closed subset of X such that x ∈/C,
and applying (i) we get (ii).
(ii)⇒(i) Take U = Cc and apply (ii).
(ii)⇔(iii) Apply the fact that (cosupp(σ))c = [σ = 1].

Proposition 4.2. Let (F, p,X) be a completely regular BL-sheaf space. Then
(i) X is a regular topological space;
(ii) every section over an open subset of X is locally in the BL-algebra Γ(X,F )
of global sections of the BL-sheaf space;
(iii) the family [σ = 1]σ∈Γ(X,F ) form a basis for the topology of X;
(iv) Fx

∼= A/Ker(px) for all x ∈ X.

Proof. (i) Let x ∈ X and U be an open neighborhood of x. Applying Lemma
4.1(iii), there is σ ∈ Γ(X,F ) such that σ(x) = 0x and cosupp(σ) ⊆ U . Hence,
x ∈ [σ = 0] and, since Fy is nontrivial for all y ∈ X , we have that 0y 6= 1y for
all y ∈ X , so x ∈ [σ = 0] ⊆ cosupp(σ). Hence, there is a closed neighborhood
C = cosupp(σ) of x such that C ⊆ U . Thus, the closed neighborhoods of x form
a basis for neighborhoods, so X is regular.
(ii) We shall prove that (ii) from Proposition 3.3 is satisfied with A = Γ(X,F ).
Hence, we have to show that for each x ∈ X , px is onto. Let a ∈ Fx, that is a ∈ F
such that p(a) = x. Applying Proposition 3.1(ii), there is an open neighborhood
U of x and a section τ over U such that τ(x) = a. By Lemma 4.1(iii), there is
θ ∈ Γ(X,F ) such that θ(x) = 0x and cosupp(θ) ⊆ U . Let σ : X → F defined
by σ(y) = θ(y)− →y τ(y) for y ∈ U and σ(y) = 1y for y ∈/U . It is obvious that
p ◦ σ = 1X and that px(σ) = σ(x) = θ(x)− →x τ(x) = 0−x →x a = 1x → a = a.
It remains to prove that σ is continuous. Since cosupp(θ) ⊆ U , we get that
U ∪ (cosupp(θ))c = X . Let us prove that σ(y) = 1y for all y ∈ (cosupp(θ))c.
If y ∈/U , then σ(y) = 1y by the definition of σ. If y ∈ U ∩ (cosupp(θ))c, then
θ(y) = 1y and σ(y) = θ(y)− →y τ(y) = 1−y →y τ(y) = 0y → τ(y) = 1y. Hence,
we have got that σ|U , σ|(cosupp(θ))c are continuous and U, (cosupp(θ))c form an
open covering of X . It follows that σ is continuous. Thus, we have obtained
σ ∈ Γ(X,F ) such that px(σ) = a.
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(iii) We have that [σ = 1] is open in X for all σ ∈ Γ(X,F ). We shall prove that
for any x ∈ X and any open neighborhood U of x there is σ ∈ Γ(X,F ) such
that x ∈ [σ = 1] ⊆ U . From this we get immediately that [σ = 1]σ∈Γ(X,F ) form
a basis for the topology of X . Applying Lemma 4.1(iii), there is τ ∈ Γ(X,F )
such that τ(x) = 0x and cosupp(τ) ⊆ U . Let σ = τ−. Then, σ(x) = (τ(x))− =
0−x = 1x, hence x ∈ [σ = 1]. If y ∈ [σ = 1], then σ(y) = 1y, that is (τ(y))− = 1y.
It follows that τ(y) 6= 1y, since 0y 6= 1y, so y ∈ cosupp(τ) ⊆ U . Hence, we have
proved that [σ = 1] is an open neighborhood of x contained in U .
(iv) We have proved at (ii) that the BL-morphism px : A → Fx, px(σ) = σ(x)
is onto. Hence, Fx

∼= A/Ker(px).

Let A be a BL-algebra of global sections of the BL-sheaf space (F, p,X). We
say that A is completely regular in the BL-sheaf space (F, p,X) if for each x ∈ X
and closed set C ⊆ X not containing x, there is σ ∈ A such that σ(x) = 0x and
σ|C = 1|C .
If A is completely regular in (F, p,X) and X is compact, then A is said to be
compact in the BL-sheaf space (F, p,X).
It is easy to see that, as in Lemma 4.1, A is completely regular in the BL-sheaf
space (F, p,X) iff for each x ∈ X and every open neighborhood U of x there is
σ ∈ A such that σ(x) = 0x and σ(y) = 1y for all y ∈/U . The following result
extends Proposition 4.2(i) and (iii) and its proof is similar.

Lemma 4.3. Let A be a BL-algebra of global sections that is completely regular
in (F, p,X). Then
(i) X is regular;
(ii) the family [σ = 1]σ∈A form a basis for the topology of X.

The following lemma collects some obvious facts that will be used in the
sequel.

Lemma 4.4. Let (F, p,X) be a BL-sheaf space.
(i) (F, p,X) is completely regular (compact) iff the BL-algebra Γ(X,F ) of global
sections is completely regular (compact) in (F, p,X);
(ii) Suppose that A and B are BL-algebras of global sections such that A ⊆ B.
If A is completely regular (compact) in (F, p,X), then B is completely regular
(compact) in (F, p,X);
(iii) If there is a BL-algebra A of global sections that is completely regular (com-
pact) in (F, p,X), then (F, p,X) is completely regular (compact).

Proposition 4.5. Let A be a BL-algebra of global sections that is compact
in (F, p,X) and suppose that every global section is locally in A. Then A is
necessarily the BL-algebra Γ(X,F ).

Proof. Let σ ∈ Γ(X,F ). Since σ is locally in A, it follows that there are an
open covering (Ui)i∈I of X and a family (σi)i∈I of elements of A such that
σ|Ui

= σi|Ui
for all i ∈ I. For each x ∈ X , there is ix ∈ I such that x ∈ Uix

and
applying the fact that A is completely regular in (F, p,X), we get τix

∈ A such
that τix

(x) = 0x and τix
(y) = 1y for all y ∈/Uix

. Let us denote Uix
∩ [τix

= 0]

11



by Vx. Then, x ∈ Vx ⊆ Uix
for all x ∈ X , so the family (Vx)x∈X is an open

covering of X . Since X is compact, it follows that there are x1, · · · , xn ∈ X
such that X = Vx1

∪ · · · ∪ Vxn
. Let us denote Vxk

by Vk, ixk
by ik and τixk

by

τk for all k = 1, n. We shall prove that σ =
∧

k=1,n(σik
∨ τk). Let x ∈ X and

J = {k = 1, n | x ∈ Uik
}. It is obvious that J is nonempty, since

⋃
k=1,n Uik

=
X . We have that σik

(x) = σ(x) for all k ∈ J and x ∈/Uik
for all k ∈/J , so

τk(x) = 1x for all k ∈/J . It follows that [
∧

k∈J (σik
(x) ∨ τk(x))] ∧ [

∧
k∈/J (σik

(x) ∨

τk(x))] = [
∧

k∈J (σ(x)∨ τk(x))]∧ [
∧

k∈/J(σik
(x)∨1x)] = σ(x)∨

∧
k∈J τk(x). Since

X =
⋃

k=1,n Vk, there is j = 1, n such that x ∈ Vj , so τj(x) = 0x and j ∈ J , since
Vj ⊆ Uij

. It follows that (
∧

k∈J τk)(x) = 0x, hence [
∧

k=1,n(σik
∨τk)](x) = σ(x).

Thus, σ =
∧

k=1,n(σik
∨ τk), hence σ ∈ A.

4.1 The compactness theorem

In the sequel, A will be a BL-algebra of global sections of the BL-sheaf space
(F, p,X).
For each x ∈ X , let us denote Kx = Ker(pA

x ) = {σ ∈ A | σ(x) = 1x}. Since A
is nontrivial, it follows that Kx is a proper filter of A.
A filter T of A is called fixed if there is x ∈ X such that T ∨Kx is a proper filter
of A. Otherwise, T is said to be a free filter of A.

Lemma 4.6. Let A be a BL-algebra of global sections of (F, p,X), P a prime
filter and M a maximal filter of A. Then
(i) M is fixed iff M contains the filter Kx for some x ∈ X;
(ii) if MP is the unique maximal filter that contains P , then P is fixed iff MP

is fixed;
(iii) if P contains the filter Kx for some x ∈ X, then P is fixed.

Proof. (i) Suppose that M is fixed, so there is x ∈ X such that M ∨ Kx is
a proper filter of A. Since M ⊆ M ∨ Kx and M is maximal, it follows that
M ∨Kx = M , hence Kx ⊆ M . Conversely, if Kx ⊆ M for some x ∈ X , we get
that M ∨Kx = M , so M ∨Kx is a proper filter of A. That is, M is fixed.
(ii) If MP is fixed, then, by (i), there is x ∈ X such that Kx ⊆ MP . Since
P ⊆ MP , we have that P ∨ Kx ⊆ MP , hence P ∨ Kx is a proper filter of A,
i.e. P is fixed. Conversely, suppose that P is fixed, that is P ∨ Kx is proper
for some x ∈ X . We get that MP and P ∨Kx are proper filters containing the
prime filter P , so applying Proposition 2.2 and the fact that MP is maximal, it
follows that P ∨Kx ⊆MP . Hence, Kx ⊆MP , so by (i), MP is fixed.
(iii) Since Kx ⊆ MP , we get that MP is fixed, by (i). Applying (ii), we obtain
that P is also fixed.

Lemma 4.7. Let A be a BL-algebra of global sections of (F, p,X). The following
are equivalent
(i) every proper filter of A is fixed;
(ii) every prime filter of A is fixed;
(iii) every maximal filter of A is fixed.
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Proof. (i)⇒ (ii) Obviously.
(ii)⇒ (iii) Apply the fact that Max(A) ⊆ Spec(A), by Proposition 2.4.
(iii)⇒(i) Let F be a proper filter of A. By Proposition 2.1, there is a maximal
filter M such that F ⊆M . Since M is fixed, we get x ∈ X such that Kx ⊆M .
We have that F,Kx ⊆ M , so F ∨Kx ⊆ M . Hence, F ∨Kx is a proper filter of
A, that is F is fixed.

Lemma 4.8. Let A be a BL-algebra of global sections of (F, p,X) and suppose
that X is compact. Then
(i) for every prime filter P of A there is x ∈ X such that Kx ⊆ P ;
(ii) every proper filter of A is fixed.

Proof. (i) Let P be a prime filter of A and suppose that Kx ⊆/P for any x ∈ X .
That is for any x ∈ X there is σx ∈ Kx such that σx ∈/P . Since σx ∈ Kx, we
get that σx(x) = 1x, that is x ∈ [σx = 1]. Thus, X =

⋃
x∈X [σx = 1], hence the

family [σx = 1]x∈X is an open covering of X . Since X is compact, it follows that
there are x1, · · · , xn ∈ X such that X =

⋃n
i=1[σi = 1], where σi denotes σxi for

i = 1, n. It follows immediately that σ1 ∨ · · · ∨ σn = 1 ∈ P . Since P is prime,
we obtain that σi ∈ P for some i = 1, n. Thus, we have got a contradiction.
(ii) Applying (i) and Lemma 4.6(iii), we obtain that every prime filter of A is
fixed. Now apply Lemma 4.7 to get that every proper filter of A is fixed.

In the following, we shall denote by SpecX(A) the set of prime filters of A
that are fixed and by MaxX(A) the set of maximal filters of A that are fixed.

Lemma 4.9. Suppose that A is completely regular in (F, p,X). Then
(i) for any P ∈ SpecX(A) there is a unique x ∈ X such that Kx ⊆ MP , where
MP is the unique maximal filter that contains P ;
(ii) for any M ∈MaxX(A) there is a unique x ∈ X such that Kx ⊆M .

Proof. (i) The existence of x ∈ X such that Kx ⊆MP follows from Lemma 4.6.
It remains to prove the unicity. Let us suppose that there is y 6= x such that
Ky ⊆ MP . Since X is Hausdorff, there is an open neighborhood U of x such
that y ∈/U . Applying now Lemma 4.1(ii), there is σ ∈ A such that σ(x) = 0x

and σ(z) = 1z for all z ∈/U . It follows that σ(y) = 1y, so σ ∈ Ky ⊆ MP and
σ−(x) = 1x, hence σ− ∈ Kx ⊆ MP . We have got that σ, σ− ∈ MP , hence
σ ⊙ σ− = 0 ∈ MP . Thus, we have obtained that MP is not proper, that is a
contradiction.
(ii) By (i).

If A is completely regular in (F, p,X), then, by the above lemma, we can
define a function s : SpecX(A) → X that assigns to each P ∈ SpecX(A) the
unique x ∈ X such that Kx ⊆ MP . We shall denote by m its restriction to
MaxX(A). Then m assigns to every fixed maximal filter M of A the unique
x ∈ X such that Kx ⊆M .

Corollary 4.10. Let A be a BL-algebra of global sections of (F, p,X) and sup-
pose that X is compact. Then for every prime filter P of A there is a unique
x ∈ X such that Kx ⊆ P .
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Proof. Apply Lemmas 4.8 and 4.9.

Lemma 4.11. Suppose that A is completely regular in (F, p,X). Then for any
M ∈MaxX(A), Km(M) ⊆ O(M).

Proof. Let x = m(M) and σ ∈ Kx. We get that σ(x) = 1x, so x ∈ [σ = 1].
Applying the fact that A is completely regular in (F, p,X), we get τ ∈ A such
that τ(x) = 0x and τ(y) = 1y for all y ∈/[σ = 1]. It is clear that σ ∨ τ = 1.
From τ(x) = 0x, it follows that τ−(x) = 1x, so τ− ∈ Kx ⊆ M . Since M is
proper, we must have τ ∈/M . Hence, there is τ ∈/M such that σ ∨ τ = 1, that is
σ ∈ O(M).

Lemma 4.12. Let (F, p,X) be a completely regular local BL-sheaf space and
A = Γ(X,F ). Then
(i) for any x ∈ X there is a unique M ∈Max(A) such that Kx ⊆M ;
(ii) Km(M) = O(M) for any M ∈MaxX(A).

Proof. (i) By Proposition 4.2(v) and the fact that Ker(px) = Kx, it follows
that Fx

∼= A/Kx for all x ∈ X . Hence, A/Kx is local for any x ∈ X . Apply
now Proposition 2.14.
(ii) Applying Proposition 4.11, we have that Km(M) ⊆ O(M). Let us prove the
converse inclusion. If we denote x = m(M), then Kx ⊆ M . Let σ ∈ O(M),
so there is τ ∈/M such that σ ∨ τ = 1. Since Fx is local, its unique maximal
filter is Nx = {a ∈ Fx | ord(a) = ∞}. By Proposition 2.10, we have that
p−1

x (Nx) is a maximal filter of A and it is easy to see that Kx ⊆ p−1
x (Nx). Since

Kx ⊆ p−1
x (Nx), Kx ⊆M and p−1

x (Nx),M are maximal filters of A, applying (i)
it follows that p−1

x (Nx) = M . Now, τ ∈/M implies τ ∈/p−1
x (Nx), so ord(τ(x))) <

∞. Thus, there is n ∈ ω − {0} such that (τ(x))n = 0x. Since σ ∨ τ = 1, we get
that σ(x) ∨x τ(x) = 1x, so (σ(x))n ∨x (τ(x))n = 1x, that is (σ(x))n = 1x, hence
σ(x) = 1x. Thus, we have got that σ ∈ Kx.

Proposition 4.13. Let A be completely regular in (F, p,X). Then s is onto
and m is continuous and onto.

Proof. Let x ∈ X . Then Kx is a proper filter of A, so, by Proposition 2.1,
there is a maximal filter M such that Kx ⊆ M . Applying Lemma 4.6(i), we
get that M is fixed. Hence, M ∈ MaxX(A) is such that m(M) = x. Thus, m
is onto and, obviously, s is also onto. Let us prove now that m is continuous.
Let M ∈ MaxX(A), x = m(M) and U an open neighborhood of x. Since A is
completely regular in (F, p,X)), there is σ ∈ A such that σ(x) = 0x and σ(y) =
1y for all y ∈/U . Let V = d(σ) ∩MaxX(A) = {N ∈ MaxX(A) | σ ∈/N}. Then
V is an open subset of MaxX(A). Since σ(x) = 0x, we get that σ−(x) = 1x,
that is σ− ∈ Kx ⊆ M . It follows that σ ∈/M , hence M ∈ V . Let us prove that
m(V ) ⊆ U . Let N ∈ V and y = m(N), so Ky ⊆ N . If y ∈/U , then σ(y) = 1y,
so σ ∈ Ky, hence σ ∈ N . This contradicts the fact that N ∈ d(σ). It follows
that y ∈ U . Thus, we have proved that V is an open neighborhood of M such
that m(V ) ⊆ U . That is, m is continuous at M .
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Suppose that A is compact in (F, p,X). Then, by Lemma 4.8, we have that
SpecX(A) = Spec(A) and, by Corollary 4.10, s : Spec(A) → X assigns to every
prime filter P of A the unique x ∈ X such thatKx ⊆ P . We obtain the following
corollary.

Corollary 4.14. Let A be compact in the BL-sheaf space (F, p,X). Then s and
m are continuous, closed and onto.

Proof. We get that s is continuous in a similar manner with the proof of con-
tinuity of m from Proposition 4.13 . To obtain that the functions are closed,
apply [20, Theorem 7.2.2, p. 71], since s,m are continuous and onto, Max(A)
and Spec(A) are compact and X is Hausdorff.

Theorem 4.15. (The compactness theorem)
Suppose that A is completely regular in the BL-sheaf space (F, p,X). The fol-
lowing are equivalent
(i) the topological space X is compact;
(ii) every proper filter of A is fixed;
(iii) every maximal filter of A is fixed;
(iv) every prime filter of A is fixed;
(v) A is compact in the BL-sheaf space (F, p,X).

Proof. (i)⇔(v) By definition.
(ii)⇔(iii)⇔(iv) By Lemma 4.7.
(i)⇒(ii) Apply Lemma 4.8.
(ii)⇒(i) We have that MaxX(A) = Max(A) and m : Max(A) → X . Since
m is continuous and onto and Max(A) is compact, applying a known result
of topology, it follows that X is also compact (see, e.g., [20, Theorem 7.2.1,
p.71]).

Proposition 4.16. If (F, p,X) is a compact BL-sheaf space and A=Γ(X,F ),
then

m is a homeomorphism iff (F, p,X) is a local BL-sheaf space.

Proof. Applying Propositions 2.14 and 4.2(iv), it follows that m is injective iff
for any x ∈ X there is a unique maximal filter M of A such that m(M) = x iff
for any x ∈ X there is a unique maximal filter M of A such that Kx ⊆ M iff
for all x ∈ X , A/Kx is local iff for all x ∈ X , Fx is a local BL-algebra. Hence, if
m is a homeomorphism, then (F, p,X) is a local BL-sheaf space. Conversely, if
(F, p,X) is local, then m is injective. We have that m is bijective, continuous
and closed, by Corollary 4.14. Hence, m is a homeomorphism.

Let (F, p,X) be a compact local BL-sheaf space and A = Γ(X,F ). By the
proof of the above proposition, we can define a function n : X → Max(A),
that associates with every x ∈ X the unique maximal filter M of A such that
Kx ⊆M . It is easy to see that

Proposition 4.17. Let (F, p,X) be a compact local BL-sheaf space. Then n is
the inverse of m, hence n : X →Max(A) is also a homeomorphism.
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5 Compact representations of BL-algebras

By a sheaf representation (or simply representation) of a non-trivial BL-algebra
A will be meant a BL-morphism

ϕ : A→ Γ(X,F )
from A to the BL-algebra of global sections of a BL-sheaf space (F, p,X).
Hence, ϕ(A) is a BL-algebra of global sections of (F, p,X). In a representation
ϕ, each a ∈ A determines a global section ϕ(a); in particular, for every x ∈ X ,
ϕ(a)(x) is an element of the stalk Fx.
For each x ∈ X , we define

ϕx : A→ Fx, ϕx(a) = ϕ(a)(x) for all a ∈ A,
Kx = Ker(ϕx) = {a ∈ A | ϕ(a)(x) = 1x}.

Since ϕx = px ◦ ϕ, we have that ϕx is a BL-morphism, so Kx is a proper filter
of A for every x ∈ X .
It is easy to see that Ker(ϕ) =

⋂
x∈X Kx, hence ϕ is a monomorphism iff⋂

x∈X Kx = {1}.
For every a ∈ A, we shall use the following notation:

V (a) = [ϕ(a) = 1] = {x ∈ X | ϕ(a)(x) = 1x} = {x ∈ X | a ∈ Kx}.
By Proposition 3.1(i), V (a) is open in X for all a ∈ A.

Let us remind that a representation of a non-trivial BL-algebra A as a subdirect
product of non-trivial BL-algebras (Ai)i∈I (or a subdirect representation of A)
consists of a monomorphism

α : A→
∏

i∈I Ai

such that for all j ∈ I the BL-morphism

A
α

−→
∏

i∈I Ai
πj

−→ Aj

is surjective.

Proposition 5.1. Any sheaf representation ϕ : A → Γ(X,F ) such that ϕ is a
monomorphism determines a subdirect representation of A

Proof. Since ϕ is a monomorphism, we have that
⋂

x∈X Kx = {1}. Applying
now a general result of universal algebra (see, e.g., [2], Lemma II.8.2, p. 57) it
follows that α : A →

∏
x∈X A/Kx, defined by α(a)(x) = a/Kx, is a subdirect

representation of A.

A filter space of a BL-algebra A is a family (Tx)x∈X of proper filters of A,
indexed by a topological space X .
Let ϕ : A → Γ(X,F ) be a representation of A. The filter space (Kx)x∈X will
be called the representation space of the representation, and the filters indexed
the representation filters. The topology generated by the family (V (a))a∈A of
subsets of X is called the representation topology on the space X . Then, any
topology on X contains the representation topology.
We say that a filter space (Tx)x∈X canonically determines a representation of A
if there is a representation ϕ : A→ Γ(X,F ) such that Tx = Kx for all x ∈ X .

In the sequel, we shall give an existence theorem for representations of BL-
algebras.
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Let A be a nontrivial BL-algebra and (Tx)x∈X a filter space of A such that
the subset V (a) = {x ∈ X | a ∈ Tx} is open in X for all a ∈ A. Then a
BL-sheaf space (FA, pA, X) and a representation ϕ : A → Γ(X,FA) can be
constructed in the following way, given in [5] for universal algebra. Let FA

be the disjoint union of the sets (A/Tx)x∈X and pA : FA → X the canonical
projection, so p−1

A ({x}) = A/Tx for all x ∈ X . For all x ∈ X , Tx is a proper
filter of A, so A/Tx is a nontrivial BL-algebra. For each a ∈ A, define the
map [a] : X → FA by [a](x) = a/Tx. Endow FA with the topology generated
by the family {[a](U) | a ∈ A and U is open in X}. Applying [5, Corollary
2], we get that (FA, pA, X) is a sheaf space of BL-algebras and the function
ϕ : A→ Γ(X,FA), defined by ϕ(a) = [a] for all a ∈ A, is a representation of A.
It is easy to see that Kx = Tx for all x ∈ X .
Hence, we get the following theorem:

Theorem 5.2. Let A be a nontrivial BL-algebra and (Tx)x∈X a filter space of
A such that the subset V (a) = {x ∈ X | a ∈ Tx} is open in X for all a ∈ A.
Then (Tx)x∈X canonically determines a representation of A.

Corollary 5.3. Any subdirect representation of A determines a sheaf represen-
tation of A.

Proof. Let α : A →
∏

x∈X Ax be a subdirect representation of A. For any
x ∈ X , take Tx = Ker(πx ◦ α) and consider on X the topology generated by
the family (V (a))a∈A. Apply now Theorem 5.2.

From now on, X will be assumed to denote a Hausdorff topological space.
We shall define completely regular and compact representations and, finally,
we shall prove that any compact representation arises canonically from a filter
space of the BL-algebra satisfying certain conditions.

Thus, a representation ϕ : A → Γ(X,F ) of a BL-algebra A in a BL-sheaf
space (F, p,X) will be said to be a completely regular representation of A if ϕ
is a monomorphism and ϕ(A) is completely regular in (F, p,X). A compact
representation of A is a monomorphism ϕ : A → Γ(X,F ) such that ϕ(A) is
compact in (F, p,X). Hence, a compact representation is a completely regular
representation ϕ : A→ Γ(X,F ) with the property that X is compact.
By Proposition 5.1, we get that any completely regular (compact) representation
determines a subdirect representation of A.

Proposition 5.4. Let ϕ : A → Γ(X,F ) be a completely regular representation
of A. Then
(i) for any distinct x, y ∈ X, there is a ∈ A such that ϕ(a)(x) = 0x and
ϕ(a)(y) = 1y;
(ii) the topology on X is the representation topology.

Proof. (i) Since X is Hausdorff, we have that {y} is closed in X . Apply now
the fact that ϕ(A) is completely regular in (F, p,X) for the closed set {y} and
x ∈/{y}.
(ii) As we have noticed, the topology on X contains the representation topology.
For the converse, apply Proposition 4.3(ii).
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For any BL-algebra A, a family (Tx)x∈X of proper filters of A will be said
to be coprime if

⋂
x∈X Tx = {1} and for any distinct x, y ∈ X we have

Tx ∨ Ty = A.
The family (Tx)x∈X is called strongly coprime if

⋂
x∈X Tx = {1} and for any

x ∈ X and a ∈ Tx, we have
Tx ∨

⋂
{Ty | y ∈ X and a ∈/Ty} = A.

In the sequel, let us consider a filter space (Tx)x∈X of A such that the subset
V (a) = {x ∈ X | a ∈ Tx} is open in X for all a ∈ A. By Theorem 5.2, there is a
representation ϕ : A → Γ(X,F ) of A such that Tx = Kx = {a ∈ A | ϕ(a)(x) =
1x} for all x ∈ X .

Lemma 5.5. If ϕ is completely regular, then the family (Tx)x∈X is coprime.

Proof. Since ϕ is a monomorphism, we have that
⋂

x∈X Tx = {1}. Let x, y ∈ X
be two distinct points of X . Applying Proposition 5.4(i), it follows that there
is a ∈ A such that ϕ(a)(x) = 0x and ϕ(a)(y) = 1y. Hence, a ∈ Ty and a− ∈ Tx,
since ϕ(a−)(x) = (ϕ(a)(x))− = 0−x = 1x. We get that 0 = a⊙ a− ∈ Tx ∨Ty, i.e.
Tx ∨ Ty = A.

Proposition 5.6. The following are equivalent:
(i) ϕ is completely regular;
(ii) the family (Tx)x∈X is strongly coprime and the topology on X is generated
by the family V (a)a∈A.

Proof. (i)⇒(ii) By Proposition 5.4(ii), the topology on X is generated by the
family V (a)a∈A. Let us prove that the family (Tx)x∈X is strongly coprime. Let
x ∈ X and a ∈ Tx. Since ϕ(A) is completely regular in (F, p,X) and V (a) is an
open neighborhood of x, there is b ∈ A such that ϕ(b)(x) = 0x and ϕ(b)(y) = 1y

for all y ∈/V (a). It follows that b− ∈ Tx and b ∈
⋂
{Ty | y ∈ X and a ∈/Ty}, so

0 = b⊙ b− ∈ Tx ∨
⋂
{Ty | y ∈ X and a ∈/Ty}.

(ii)⇒(i) Let x ∈ X and U be an open neighborhood of x. Since the topology on
X is generated by the family V (a)a∈A, there is a ∈ A such that x ∈ V (a) ⊆ U .
We have that Tx ∨

⋂
{Ty | y ∈ X and a ∈/Ty} = A, so there are b ∈ Tx and

c ∈
⋂
{Ty | y ∈ X and a ∈/Ty} such that b ⊙ c = 0. Since c ∈ Ty for all y ∈ X

such that a ∈/Ty, we get that ϕ(c)(y) = 1y for all y ∈/V (a), hence ϕ(c)(y) = 1y

for all y ∈/U , since V (a) ⊆ U . From b ⊙ c = 0 we obtain that b ≤ c−, so
c− ∈ Tx, because b ∈ Tx and Tx is a filter of A. We get that ϕ(c−)(x) = 1x,
hence ϕ(c)(x) = 0x. Thus, for any x ∈ X and any open neighborhood U of x
there is c ∈ A such that ϕ(c)(x) = 0x and ϕ(c)(y) = 1y for all y ∈/U . That is,
ϕ(A) is completely regular in (F, p,X).

Theorem 5.7. Let A be a nontrivial BL-algebra and (Tx)x∈X a filter space of
A such that the subset V (a) = {x ∈ X | a ∈ Tx} is open in X for all a ∈ A.
The following are equivalent:
(i) the filter space canonically determines a compact representation of A;
(ii) X is compact and the family (Tx)x∈X is coprime;
(iii) the family (Tx)x∈X is strongly coprime, the topology on X is generated by
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the family V (a)a∈A and any maximal filter of A contains a filter of the filter
space.

Proof. (i)⇒(ii) Obviously X is compact. Apply Lemma 5.5 to get that (Tx)x∈X

are coprime.
(ii)⇒(i) Suppose that U is an open subset of X and let x ∈ U and C = U c.
Then, for all y ∈ C we have that x 6= y, so, by the fact that the family (Tx)x∈X

is coprime, we obtain that Tx ∨ Ty = A. Hence, for all y ∈ C, there are ay ∈ Tx

and by ∈ Ty such that ay ⊙ by = 0y. It follows that (by)− ∈ Tx for all y ∈ C.
We also get that y ∈ V (by) for all y ∈ C, so C ⊆

⋃
y∈C V (by). Since C is

a closed subset of the compact space X , C is also compact, hence there are
y1, · · · yn ∈ C and b1 = by1 , · · · bn = byn ∈ Ty such that C ⊆ V (b1)∪ · · · ∪ V (bn).
Let b = b1 ∨ · · · ∨ bn. Then b ∈ Ty for all y ∈ C, so C ⊆ V (b), hence V (b)c ⊆ U .
We also have that b− = b−1 ∧ · · · ∧ b−n ∈ Tx. Let us prove that V (b−) ⊆ U . If
z ∈ V (b−), then b− ∈ Tz, so b ∈/Tz, since Tz is proper. That is, z ∈/V (b), so
z ∈ U . Thus, for any open subset U of X and any x ∈ U , we have got bx ∈ A
such that bx ∈ Ty for all y ∈/U , (bx)− ∈ Tx and V ((bx)−) ⊆ U . It follows that
U =

⋃
x∈U V ((bx)−), hence U is open in the representation topology. Thus, we

have proved that the topology on X is generated by the family V (a)a∈A. Let us
now prove that the family (Tx)x∈X is strongly coprime. Let x ∈ X and a ∈ Tx,
i.e. x ∈ V (a). Applying the above construction for U = V (a), there is b ∈ A
such that b− ∈ Tx and b ∈ Ty for all y ∈/V (a), so b ∈

⋂
{Ty | y ∈ X and a ∈/Ty}.

Hence, 0 = b⊙ b− ∈ Tx ∨
⋂
{Ty | y ∈ X and a ∈/Ty}, that is, Tx ∨

⋂
{Ty | y ∈ X

and a ∈/Ty} = A. Apply now Proposition 5.6 and the fact that X is compact to
get (i).
(i)⇔(iii) Applying Theorem 5.2 and Proposition 5.6, it follows that the filters
(Tx)x∈X canonically determine a completely regular representation of A, ϕ :
A→ Γ(X,F ) iff the family (Tx)x∈X is strongly coprime and the topology on X
is generated by the family V (a)a∈A. Now, applying The compactness theorem
we obtain that the representation ϕ is compact iff ϕ(A) is compact in (F, p,X)
iff every maximal filter of ϕ(A) is fixed. Applying now Lemma 4.6(i) and the
fact that A ∼= ϕ(A), we get that every maximal filter of ϕ(A) is fixed iff any
maximal filter of A contains a filter Tx for some x ∈ X .

Applying Theorem 5.7, we prove the existence of a compact representation
for any nontrivial BL-algebra A.

Proposition 5.8. The family (O(M))M∈Max(A) canonically determines a com-
pact representation of A.

Proof. We have that Max(A) is compact and Hausdorff and, applying Proposi-
tions 2.18(ii) and 2.19, it follows that the family (O(M))M∈Max(A) is coprime.
It remains to prove that V (a) = {M ∈Max(A) | a ∈ O(M)} is open in Max(A)
for all a ∈ A. Let M ∈ V (a). Then a ∈ O(M), so there is b ∈/M such that
a∨ b = 1. If N ∈ d(b), then b ∈/N and a∨ b = 1, so a ∈ O(N), that is N ∈ V (a).
Hence, M ∈ d(b) ⊆ V (a), so V (a) is open.
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Let (FA, pA,Max(A)) be the BL-sheaf space and ϕ : A → Γ(Max(A), FA)
the compact representation determined by the family (O(M))M∈Max(A). Then
(FA)M = A/O(M) for all M ∈ Max(A), pA : FA → Max(A) is the canonical
projection and ϕ(a) = [a] for all a ∈ A, where [a] ∈ Γ(Max(A), FA) is defined
by [a](M) = a/O(M) for all M ∈Max(A).
Since, by Proposition 2.18(iii), A/O(M) is a local BL-algebra, as a consequence
of the above proposition and Proposition 5.1, we get the following result.

Corollary 5.9. [25]
Any non-trivial BL-algebra A is isomorphic with a subdirect product of local
BL-algebras.

Proposition 5.10. ϕ : A ∼= Γ(Max(A), FA).

Proof. We have to prove that ϕ(A) = Γ(Max(A), FA). Since ϕ(A) is com-
pact in (FA, pA,Max(A)), by Proposition 4.5, it is sufficient to show that ev-
ery global section is locally in ϕ(A). Let σ ∈ Γ(Max(A), FA). Then for all
M ∈ Max(A), σ(M) ∈ A/O(M), so there is aM ∈ A such that σ(M) =
aM/O(M) = [aM ](M) = ϕ(aM )(M), soM ∈ [σ = ϕ(aM )]. Thus, there is a fam-
ily (aM )M∈Max(A) of elements of A and a family (UM = [σ = ϕ(aM )])M∈Max(A)

of open sets of Max(A) such that σ|UM
= ϕ(aM )|UM

for all M ∈Max(A). That
is, σ is locally in ϕ(A).

Example 5.11. Let us consider the case when BL-algebra A is the interval [0, 1]
endowed with the structure induced by a continuous t-norm. Since A is a BL-
chain, we get from Proposition 2.13 that A is local, so A has a unique maximal
filter M . Hence, Max(A) = {M} and it is easy to see that O(M) = {1},
so A/O(M) = A/{1} ∼= A. Thus, the associated BL-sheaf space is (FA =
[0, 1], pA,Max(A) = {M}), where pA : [0, 1] → {M}, pA(a) = M . For all
a ∈ [0, 1], we have that [a] : {M} → [0, 1] is defined by [a](M) = a, so by the
construction before Theorem 5.2, it follows that the topology on FA = [0, 1] is
the discrete topology.

6 The equivalence between BL-algebras and

compact local BL-sheaf spaces

Let us denote by CL − BL − ShSp the full subcategory of BL − ShSp whose
objects are compact local BL-sheaf spaces. By Proposition 3.5, there is a sec-
tion functor S : BL − ShSp → BL. Then, by composing S with the inclusion
functor, we get a functor from CL−BL− ShSp to BL, denoted by S, too.
In the sequel, we shall define a functor T : BL→ CL−BL−ShSp and we shall
prove that the functors S, T determine an equivalence between CL−BL−ShSp
and BL.
For any nontrivial BL-algebra A, let us define T (A) = (FA, pA,Max(A)). By
the previous section, (FA, pA,Max(A)) is a compact BL-sheaf space. For any
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M ∈Max(A), we have that the stalk at M is (FA)M = A/O(M). By Proposi-
tion 2.18(iii), A/O(M) is a local BL-algebra, so (FA, pA,Max(A)) is a compact
local BL-sheaf space.
Let A and B be nontrivial BL-algebras and h : A→ B a BL-morphism. If M is
a maximal filter of B, then h−1(M) is a maximal filter of A, by Proposition 2.10.
Let us define h : Max(B) → Max(A) by (h)(M) = h−1(M) for any maximal
filter M of B.

Proposition 6.1. Let h : Max(B) → Max(A) be the function defined above.
Then
(i) O(h(M)) ⊆ h−1(O(M)) ⊆ h(M) for any maximal filter M of B;
(ii) h is continuous.

Proof. (i) Let a ∈ O(h(M)), so there is b ∈/h(M) such that a ∨ b = 1. It fol-
lows that h(a) ∨ h(b) = 1 and h(b) ∈/M , since b ∈/h−1(M). That is, h(a) ∈
O(M), hence a ∈ h−1(O(M)). By Proposition 2.19(i), O(M) ⊆ M , hence
h−1(O(M)) ⊆ h−1(M) = h(M).
(ii) Let M ∈ Max(B) and V be an open neighborhood of h(M). We shall
prove that there is an open neighborhood U of M such that h(U) ⊆ V , hence
h is continuous at M . Since ϕ : A → (FA, pA,Max(A)) is a completely regu-
lar representation of A, there is a ∈ A such that ϕ(a)(h(M)) = 0/O(h(M))
and ϕ(a)(N) = 1/O(N) for all N∈/V . Hence, a/O(h(M)) = 0/O(h(M))
and a/O(N) = 1/O(N) for all N∈/ V . Applying Proposition 2.7, we get that
a− ∈ O(h(M) and a ∈ O(N) for all N∈/ V . Since O(h(M)) ⊆ h(M), we have
that a− ∈ h(M) and from the fact that h(M) is a maximal filter of A, it follows
that a∈/ h(M), hence h(a)∈/M . Thus, we have obtained that M is an element
of the basic open set U = d(h(a)) of Max(B). Let us prove that h(U) ⊆ V .
Suppose that there is P ∈ U such that h(P )∈/ V . From h(P )∈/ V , it follows that
a ∈ O(h(P )), so, by(i), a ∈ h(P ), that is h(a) ∈ P . This contradicts the fact
that P ∈ U . Thus, h(U) ⊆ V .

Let (h
−1

(FA), qA,Max(B)) be the BL-sheaf space induced by the function

h : Max(B) → Max(A) and (FA, pA,Max(A)) and i : FA → h
−1

(FA) the
canonical morphism over h. Since h : Max(B) → Max(A) is continuous, we

get that (h, i) : (FA, pA,Max(A)) → (h
−1

(FA), qA,Max(B)) is a morphism of
BL-sheaf spaces.

Proposition 6.2. For any maximal filter M ∈ Max(B), let us define ψM :

(h
−1

(FA))M → (FB)M , by ψM (M,a/O(h(M))) = h(a)/O(M) for any a ∈ A.

Then (1Max(B), ψ) : (h
−1

(FA), qA,Max(B)) → (FB, pB,Max(B)) is a mor-
phism of BL-sheaf spaces.

Proof. Firstly, let us prove that ψM is well-defined. Let a, b ∈ A such that
a/O(h(M)) = b/O(h(M)). It follows that (a → b) ⊙ (b → a) ∈ O(h(M)), that
is (a → b) ⊙ (b → a) ∈ h−1(O(M)), so (h(a) → h(b)) ⊙ (h(b) → h(a)) ∈ O(M).
Thus, h(a)/O(M) = h(b)/O(M). Now, we shall apply Proposition 3.4 to get
that (1Max(B), ψ) is a morphism of BL-sheaf spaces. By the definition of ψ, it
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follows immediately that pB ◦ ψ = qA and that ψM : {M} × A/O(h(M)) →
B/O(M) is a BL-morphism for all M ∈ Max(B). It remains to prove that ψ
is continuous. By Proposition 3.1(vi), it is sufficient to prove that ψ is open.
Since the family {d(a) | a ∈ A} is a basis for Max(A), by Proposition 3.1(iv),
Proposition 5.10, it follows that a basis for the topology of FA is the family

{[c](d(a)) | a, c ∈ A}. We get that a basis for h
−1

(FA) is the family {(d(b) ×

[c](d(a))) ∩ h
−1

(A) | a, c ∈ A, b ∈ B}. A basic open set in h
−1

(A) is (d(b) ×

[c](d(a))) ∩ h
−1

(A) = {(M, c/O(h(M))) | M ∈ Max(B), b ∈/M, a ∈/h(M)} =
{(M, c/O(h(M))) | M ∈ Max(B), b∈/M, h(a)∈/M}, where a, c ∈ A, b ∈ B.

It follows that ψ((d(b) × [c](d(a))) ∩ h
−1

(A)) = {ψ(M, c/O(h(M))) | M ∈
Max(B), b ∈/M, h(a) ∈/M} = {h(c)/O(M) | M ∈ Max(B), b ∈/M, h(a) ∈/M} =
[h(c)](d(b) ∩ d(h(a))), which is open in FB. Hence, ψ is open.

Hence, for a BL-morphism h : A → B, we have got the morphisms of BL-

sheaf spaces (h, i) : (FA, pA,Max(A)) → (h
−1

(FA), qA,Max(B)) and (1Max(B), ψ) :

(h
−1

(FA), qA,Max(B)) → (FB , pB,Max(B)). We define T (h) = (1Max(B), ψ)◦

(h, i) = (h, αh) : T (A) → T (B), where αh = ψ ◦ i.

Thus, we completed the definition of the functor T : BL→ CL −BL− ShSp.
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Proposition 6.3. S ◦ T ∼= 1BL.

Proof. For any BL-algebra A, we have that (S ◦ T )(A) = Γ(Max(A), FA) and
for any BL-morphism h : A → B, (S ◦ T )(h) = S(h, αh) = αh#, where αh# :
Γ(Max(A), FA) → Γ(Max(B), FB) is the BL-morphism induced by αh. By
Proposition 5.10, we have an isomorphism ϕA : A ∼= Γ(Max(A), FA) for any
non-trivial BL-algebraA. Let us prove that ϕ = (ϕA)A∈Ob(BL) : 1BL

∼= S◦T is a
natural transformation. For any a ∈ A and M ∈Max(B), we have that ((αh# ◦

ϕA)(a))(M) = ((αh#)[a])(M) = (αhM )([a](h(M))) = (αhM )(a/O(h(M))) =
h(a)/O(M) and ((ϕB ◦ h)(a))(M) = [h(a)](M) = h(a)/O(M). Thus, (S ◦
T )(h) ◦ϕA = ϕB ◦h. Hence, ϕ : 1BL

∼= S ◦T is a natural isomorphism.

Proposition 6.4. T ◦ S ∼= 1CL−BL−ShSp.

Proof. Let (F, p,X) be a compact local BL-sheaf space and A = Γ(X,F ).
Then (T ◦ S)(F, p,X) = T (A) = (FA, pA,Max(A)). Let n : X → Max(A)
the function that associates with any x ∈ X the unique maximal filter M of
A such that Kx ⊆ M . By Proposition 4.17, n is a homeomorphism. Let
x ∈ X and M = n(x), so m(M) = x. Then, by Proposition 4.12, we get that
O(M) = Km(M), that is O(n(x)) = Kx. Applying now Proposition 4.2(iv), it
follows that A/O(n(x)) ∼= Fx. If αx : A/O(n(x)) → Fx is this isomorphism,
then αx(σ/O(n(x))) = σ(x) for all σ ∈ A. Let us prove that α : FA → F is a
morphism over n. Let D be an open subset of Max(A) and t ∈ Γ(D,FA). We
have to prove that the function αD

#(t) : n−1(D) → F , defined by αD
#(t)(x) =

αx(t(n(x))) for any x ∈ n−1(D), is continuous. Since (FA, pA,Max(A)) is
compact and t is a section over an open subset D of Max(A), we can apply
Proposition 4.2(ii) to get an open covering (Di)i∈I of D and a family (ti)i∈I

of sections from Γ(Max(A), FA) such that t|Di
= ti|Di

for all i ∈ I. Apply-
ing now Proposition 5.10, we obtain a family (σi)i∈I of sections from Γ(X,F )
such that ti = [σi] for all i ∈ I. Let x ∈ n−1(D), that is n(x) ∈ D. Then,
there is k ∈ I such that n(x) ∈ Dk, so t(n(x)) = [σk](n(x)) = σk/O(n(x)).
It follows that αD

#(t)(x) = αx(σk/O(n(x))) = σk(x). Let V ⊆ F be an open

neighborhood of σk(x) and U = n−1(Dk) ∩ σ−1
k (V ). Then U ⊆ n−1(D) is an

open neighborhood of x. If y ∈ U , then n(y) ∈ Dk and σk(y) ∈ V . It follows
that t(n(y)) = σk/O(n(y)), hence αD

#(t)(y) = σk(y) ∈ V . Thus, αD
#(t)(U) ⊆ V .

Hence, we have proved that for any x ∈ n−1(U) and for any open neighborhood
V of αD

#(t)(x) there is an open neighborhood U of x such that αD
#(t)(U) ⊆ V .

That is, αD
#(t) is continuous.

Hence, (n, α) : (FA, pA,Max(A)) → (F, p,X) is an isomorphism of BL-sheaf
spaces. Let λ : T ◦ S → 1CL−BL−ShSp, where λ(F,p,X) = (n, α). It remains to
prove that λ is a natural transformation. Let (f, β) : (F, p,X) → (G, q, Y )
be a morphism of BL-sheaf spaces, A = Γ(X,F ) and B = Γ(Y,G). Let
λ(F,p,X) = (n1, α1), λ(G,q,Y ) = (n2, α2). We have that (T ◦ S)(f, β) = (β#, θ),
where β# : A → B, β#(σ)(y) = βy(σ(f(y))) for all σ ∈ A and y ∈ Y ,
β# : Max(B) →Max(A) , β#(M) = (β#)−1(M), and
θ = (θM )M∈Max(B), θM : A/O(β#(M)) → B/O(M), θM (σ/(β#(M))) = β#(σ)/O(M)
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for all σ ∈ A. We have to prove that (f, β) ◦ (n1, α1) = (n2, α2) ◦ (β#, θ),
that is (n1 ◦ f, β ◦ α1) = (β# ◦ n2, α2 ◦ θ). Let y ∈ Y . If σ ∈ Kf(y),
then σ(f(y)) = 1f(y), hence β#(σ)(y) = βy(σ(f(y))) = βy(1f(y)) = 1y, so

β#(σ) ∈ Ky ⊆ n2(y), that is σ ∈ (β#)−1(n2(y)) = β#(n2(y)). Thus, we have
proved that β#(n2(y)) is a maximal filter ofA that containsKf(y). But n1(f(y))
is the unique maximal filter of A that contains Kf(y). Hence, we must have
(β#)−1(n2(y)) = n1(f(y)). Let us prove now that β ◦ α1 = α2 ◦ θ. Let y ∈ Y
and σ ∈ A. Then (β ◦ α1)y(σ/O(n1(f(y)))) = βy(σ(f(y))) = β#(σ)(y), and
(α2 ◦ θ)y(σ/O(β#(n2(y)))) = (α2)y(β#(σ)/O(n2(y))) = β#(σ)(y).

Thus, we have got

Theorem 6.5. The functors S : CL − BL − ShSp → BL and T : BL →
CL − BL − ShSp establish an equivalence between the category of nontrivial
BL-algebras and the category of compact local BL-sheaf spaces.

As a consequence, we get the corresponding result for MV-algebras.

Corollary 6.6. [9]
The functor from the category of compact local MV-sheaf spaces to the category
of nontrivial MV-algebras, obtained by assigning to each compact local MV-sheaf
space the MV-algebra of global sections, determines an equivalence between these
categories.
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