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Abstract

Formal code certification is a rigorous approach to demonstrate software quality. Its basic
idea is to require that code producers provide formal certificates, or proofs, that their code
satisfies certain quality properties. In this paper, we focus on certifying software developed for
state estimation of dynamic systems, which is an important problem found in spacecraft, aircraft,
geophysical, and in many other applications. The most common way of solving state estimation
problems consists of using Kalman filters, which are stochastic, recursive algorithms providing
statistically optimal estimates of the state of a system based on noisy sensor measurements. We
present a certifier for Kalman filter programs, which is a program that takes as input a program
claiming to implement a Kalman filter together with a specification of that Kalman filter, as
well as a certificate under the form of assertions and proof scripts merged within the program
via annotations, and tells whether the code correctly implements the state estimation problem
specified. We tested our certifier on three Kalman filters: simple Kalman filter, information
filter and extended Kalman filter. So far we have played both the role of the producer of these
programs and the role of the consumer, but our next step is to merge the presented technology
with AutoFilter, a state estimation program sysnthesis system developed by researchers at
NASA Ames, the idea being to have AutoFilter synthesize the correctness certificates together
with the code.

1 Introduction

Guaranteeing properties of code has long been a major goal of the software analysis community
and has been approached using static analysis as well as formal methods, such as model checking
and theorem proving. Of these, static analysis is perhaps the most practical; commercial systems,
usually based on abstract interpretation such as PolySpace [13], are now emerging. Unfortunately,
practical applications of static analysis techniques are limited to checking programming language
level properties such as illegal type conversions, invalid arithmetic operations (e.g., division by
zero) and overflow/underflow, i.e., properties which could turn into runtime errors that would stop
the normal execution of the program. Whilst important, such efforts do not address the issue of

†This research was done in Summer 2002, when the first author participated in the Summer Student Research
Program (SSRP) sponsored by RIACS/USRA (see http://www.riacs.edu/ssrp/SSRP2002.html).
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Figure 1: Domain-specific certifier.

how to guarantee more complex properties. Traditional formal methods techniques, such as model
checking and/or theorem proving, do not always scale up well due either to their high computational
complexity or to the necessary user intervention (to add and prove lemmas, etc.).

In this paper we adopt a theorem proving style and develop a verification environment for a
class of programs and a class of properties, belonging to a specific domain of interest and respecting
a specific set of constraints. We generically called our approach domain-specific certification. A
domain-specific safety policy certifier was presented in [8] for the domain of coordinate frames, and
one for safety with respect to units of measurement (e.g., one does not add “meters” and “seconds”)
was prototyped by the second author when he was a researcher at NASA Ames; these are both
of crucial importance to many applications including astronomical navigation. Conceptually, a
domain-specific certifier consists of three main components, as shown in Figure 1. The programming
language and the abstract domain are linked via domain-specific abstract symbolic evaluation.
Many software products are developed for domains that are quite complex and involve a significant
body of mathematical knowledge, which is not the case for the semantics of standard programming
languages in which these programs are usually written. Consequently, appropriate domain-specific
abstractions of programming language constructs into domains of interest are required in order
to perform domain-specific analysis of software. Unlike in standard static analysis of programs,
where abstraction consists of grouping various values of the concrete domain into an abstract one
(such as, each real number larger than 1 is “large positive”), in domain-specific analysis there
might be no relationship between the concrete and the abstract domains; for example, 2.7 can be
“meter”, or “second”, or “meter∗Kg∗second−2”, or any other measurement unit. One would, of
course, like to certify software as automatically as possible, but this is very rarely feasible (due to
intractability arguments) and clearly close to impossible for the complex domain presented in this
paper. Therefore, user intervention is often needed to insert domain-specific knowledge into the
programs to be certified, usually under the form of code annotations; the certifier in this paper
needs annotations for model specifications, assertions, and proof scripts.

In this paper, we focus on certifying software developed for state estimation of dynamic sys-
tems, which is an important problem found in spacecraft, aircraft, geophysical, and in many other
applications. The most common way of solving state estimation problems consists of using Kalman
filters, which are stochastic, recursive algorithms providing statistically optimal estimates of the
state of a system based on noisy sensor measurements. We present a certifier for Kalman filter
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programs, which is a program that takes as input a program claiming to implement a Kalman
filter together with a specification of that Kalman filter, as well as a certificate under the form of
assertions and proof scripts merged within the program via annotations, and tells whether the code
correctly implements the state estimation problem specified or not. We tested our certifier on three
Kalman filters: simple Kalman filter, information filter and extended Kalman filter. So far we have
played both the role of the producer of these programs and the role of the consumer, but we next
intend to merge the presented technology with AutoFilter, a state estimation program synthesis
system developed by researchers at NASA Ames, which is described below. In fact, our certifier is
designed to work on any properly annotated code, but, as explained below, we believe that the full
power of domain-specific certification comes from its combination with program synthesis.

A growth area in the last couple of decades has been code generation. Although commer-
cial code generators are mostly limited to generating stub codes from high level models (e.g., in
UML), program synthesis systems that can generate fully executable code from high level behav-
ioral specifications are rapidly maturing (see, for example, [19, 17]), in some cases to the point of
commercialization (e.g., SciNapse [1]). In program synthesis, there is potential for automatically
verifying more interesting properties because additional background information — from the spec-
ification and the synthesis knowledge base — is available. The claim made in [15, 14] was that
by coupling together program synthesis and property verification, it was possible to automatically
certify that a piece of generated code satisfies certain complex properties.

The motivation for this coupling is best illustrated by example. A common software develop-
ment task in the spacecraft navigation domain is to design a system that can estimate the attitude
of a spacecraft. This is typically mission-critical software because an accurate attitude estimate
is necessary for the spacecraft controller to tilt the craft’s solar panels towards the sun. Attitude
estimators for different spacecraft are generally variations on a theme, and yet, currently, there is
very little software reuse between projects. Program synthesis offers the potential to reduce devel-
opment costs through rapid prototyping and a rapid turnaround cycle. However, for these kinds
of applications, only 20% of effort is spent in software development, the other 80% being spent on
validation of the code1, including code walkthroughs, formal and informal testing. To reduce the
80% development costs, it is necessary to provide techniques that can avoid code inspections or
reduce testing. We believe that property verification can reduce testing time and, moreover, that
many properties cannot be verified automatically without the application of program synthesis.
Verifying that a state estimator implementation actually produces a mathematically optimal esti-
mate cannot be done automatically using the code alone, because the code does not reflect all the
information needed, such as the statistical model. In [15, 14] we investigated a possible combination
of a previous work of the one presented in this paper with AutoFilter, a state estimation program
synthesis engine. AutoFilter takes as input a specification of a state estimation problem and it
generates a C/C++ program which implements that specification. We have modified AutoFilter

to generate not only the code, but also code annotations certifying the correctness of that code
with respect to its specification. The use of additional domain knowledge and information from
the synthesis process allows such verification tasks to be not only possible, but also automated.
This paper explores in greater detail the certification aspect of the work started in [15, 14], as well
as aspects related to the domain-specific proof engineering of the field of Kalman filters and its
afferent mathematical knowledge.

Related work. Our domain-specific certification approach requires more sophisticated reasoning

1Personal communication from the Jet Propulsion Laboratory (JPL).
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than in approaches to date for proof-carrying code (PCC) [12]. The abstract domain specification
is much richer than memory safety, and verifying the safety of each line of code can require tens of
thousands of inference steps. The two specification levels, for the programming language and for the
abstract domain, are independently reusable; e.g., once an abstract domain has been formulated
it can be used to certify programs written in various programming languages, and conversely,
programs can be certified for various domain-specific properties. Extended Static Checker (ESC)
[5, 16] is a tool that finds programming errors at compile time, such as array index bounds errors,
nil dereferences, deadlocks and race conditions. The user of ESC annotates the programs with
specifications in a precondition-postcondition style (similar to ours) which are checked statically
using a theorem prover for untyped predicate calculus with equality. The type system of the target
programming language is implemented in untyped first-order logic. The use of ESC is therefore
limited to programming language definable types and to properties that can be proved automatically
using ESC’s internal theorem prover. By allowing proof scripts as annotations in the programs to
certify, we practically extend the usability of our certifiers to whatever properties that can be
proved. However, some domain-specific proofs can be very complex, so, even if possible in theory,
we do not anticipate that our domain-specific certifier will be used independently from the synthesis
engine.

2 Kalman Filters

A Kalman filter is essentially a set of mathematical equations that implements a predictor-corrector
type estimator that is optimal in the sense that it minimizes the estimated error covariance - when
some presumed conditions are met. Since the time of its introduction [7], the simple Kalman filter
has been the subject of extensive research and application, particularly in the area of autonomous
or assisted navigation. This is likely due in large part to advances in digital computing that made
use of the filter practical, but also to the relative simplicity and robust nature of the filter itself.
Rarely do the conditions necessary for optimality exist, and yet the filter apparently works well for
many applications in spite of this situation.

2.1 Simple Kalman Filter

The simple Kalman filter addresses the general problem of trying to estimate the state x ∈ IRn of
a discrete-time controlled system that is governed by the linear stochastic difference equation

xk+1 = Φkxk + wk (1)

with a measurement z ∈ IRm that is

zk = Hkxk + vk. (2)

In these equations, xk is the process state vector at time k. In a typical attitude estimation problem,
for example, the state vector, xk, might contain three variables representing the rotation angles
of a spacecraft. Equation (1) is the process model which describes the dynamics of the state over
time — the state at time k + 1 is obtained by multiplying the state transition matrix Φk by the
previous state xk. The model is imperfect, however, as represented by the addition of the process
noise vector wk. Equation (2) is the measurement model and models the relationship between
the measurements and the state. This is necessary because the state usually cannot be measured
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directly. The measurement vector, zk, is related to the state by matrix Hk. The random vectors
wk and vk represent the process and measurement noise, respectively, and they are assumed to be
independent of each other, white, and with normal probability distribution:

p(wk) ∼ N(0, Qk) (3)

p(vk) ∼ N(0, Rk) (4)

E[wkv
>
i ] = 0 (5)

E[wkw>
i ] =

{

Qk, if i = k
0, if i 6= k

(6)

E[vkv
>
i ] =

{

Rk, if i = k
0, if i 6= k.

(7)

As an example of how the simple Kalman filter works in practice, consider a simple spacecraft
attitude estimation problem. Attitude is usually measured using gyroscopes, but the performance of
gyroscopes degrades over time so the error in the gyroscopes is corrected using other measurements,
e.g., from a star tracker. In this formulation, the process equation (1) would model how the
gyroscopes degrade and the equation (2) would model the relationship between the star tracker
measurements and the three rotation angles that form the state (in this case, Hk would be the
identity matrix because star trackers measure rotation angles directly). From these models, a
Kalman filter implementation would produce an optimal estimate of the current attitude, where
the uncertainties in the problem (gyro degradation, star tracker noise, etc.) have been minimized.

We define x̂−
k ∈ IRn to be the a priori state estimate at step k given knowledge of the process

prior to step k, and x̂k ∈ IRn to be the a posteriori state estimate at step k given measurement zk.
We can then define a priori and a posteriori estimate errors as

e−k = xk − x̂−
k , (8)

ek = xk − x̂k. (9)

The a priori estimate error covariance is then

P−
k = E[e−k e−k

>
] = E[(xk − x̂−

k )(xk − x̂−
k )>] (10)

and the a posteriori estimate error covariance is

Pk = E[ekek
>] = E[(xk − x̂k)(xk − x̂k)

>]. (11)

We define also the measurement prediction as

z−k = Hkx̂
−
k . (12)

In deriving the equations for the Kalman filter program, we begin with the goal of finding an
equation that computes an a posteriori estimate x̂k as a linear combination of an a priori estimate
x̂−

k and a weighted difference between the actual measurement zk and the measurement prediction
z−k as shown below:

x̂k = x̂−
k + Kk(zk − z−k ). (13)
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The difference (zk −z−k ) is called the measurement innovation, or the residual. The residual reflects
the discrepancy between the predicted measurement, z−

k , and the actual measurement, zk. A
residual of zero means that the two are in complete agreement.

The n×m matrix Kk in equation (13) is chosen to be the gain, or blending factor, that minimizes
the a posteriori estimate error covariance Pk. One form of the Kalman gain is

Kk = P−
k H>

k (HkP
−
k H>

k + Rk)
−1. (14)

The covariance matrix associated with the optimal estimate may now be computed. Using equations
(11), (13), and (14), we get

Pk = (In − KkHk)P
−
k . (15)

Figure 2 gives a complete picture of the operations of the simple Kalman filter.

Enter prior estimate x̂−

0 and
its error covariance P−

0

��

Compute Kalman gain:
Kk = P−

k
H>

k
(HkP−

k
H>

k
+ Rk)−1

��

z0, z1, · · ·

��

Project ahead:
x̂−

k+1
= Φkx̂k

P−

k+1
= ΦkPkΦ>

k
+ Qk

88

Update estimate with
measurement zk:

x̂k = x̂−

k
+ Kk(zk − Hkx̂−

k
)

��
ss

Compute error covariance for
updated estimate:

Pk = (In − KkHk)P−

k

WW

x̂0, x̂1, · · ·

Figure 2: Simple Kalman filter loop.

AutoFilter takes as input a mathematical specification including equations (1) - (7) and also
descriptions of the noise characteristics and filter parameters, and generates code that implements
the algorithm in Figure 2. More precisely, AutoFilter generates code in an intermediate lan-
guage which is then translated into C++ or Matlab. In this paper, we only consider code in the
intermediate language. Figure 3 shows a simple Kalman filter code calculating the best estimate
incrementally. In this code, xhatmin(k) and xhat(k) correspond to x̂−

k and x̂k (respectively), Pminus(k)
stands for P−

k , zminus(k) for z−k , and gain(k) is the Kalman gain Kk.
Despite the apparent simplicity of the code in Figure 3, that AutoFilter generates, the proof

of optimality for the simple Kalman filter is quite complex. The main proof task is to show that
the vector x̂k is the best estimate of the state vector xk at time k, under appropriate simplifying
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1. input xhatmin(0), Pminus(0);

2. for(k, 0, n) {

3. zminus(k) := H(k) * xhatmin(k);

4. gain(k) := (Pminus(k) * mtrans(H(k))) * minv(((H(k) * Pminus(k)) * mtrans(H(k))) + R(k));

5. xhat(k) := xhatmin(k) + (gain(k) * (z(k) - zminus(k)));

6. P(k) := (id(n) - (gain(k) * H(k))) * Pminus(k);

7. xhatmin(k + 1) := Phi(k) * xhat(k);

8. Pminus(k + 1) := ((Phi(k) * P(k)) * mtrans(Phi(k))) + Q(k);}

Figure 3: Simple Kalman filter intermediate code.

assumptions. The optimality proof is a standard proof in state estimation and it is usually presented
in books as an informal mathematical proof several pages long (see [2], for example). In the sequel,
we sketch this proof, emphasizing those aspects which are particularly relevant for its mechanization,
especially the assumptions.

The very first assumption is that the initial estimates, x̂−
0 and P−

0 , are the best prior estimate
and its error covariance matrix. Another assumption is that the most probable measurement z−

k at
a given time k is given by equation (12). With the assumption of a prior estimate x̂−

k , we seek to
use the measurement zk to improve the prior estimate. The most important assumption is that the
best estimate x̂k is a linear blending of the residual and the prior estimate (13). The justification
for this assumption is rooted in the probability of the prior estimate x̂−

k conditioned on all the prior
measurements zk (see [2, 18] for more details). Formally, this says that the best estimate x̂k is
somewhere in the image of the function x̂k(y) := λy.(x̂−

k + y(zk − z−k )), where the blending factor
y is an n × m matrix. We are looking for the particular y that yields an estimate that is optimal
using the minimum mean-square error as the performance criterion. If

Pk(y) := E[(xk − x̂k(y))(xk − x̂k(y))>]

is the a posteriori error covariance matrix regarded as a function of y, then we wish to find the
particular y that minimizes the individual terms along the major diagonal of Pk(y), because these
terms represent the estimation error covariances for the elements of the state vector being estimated.
Using another assumption, that the individual mean-square errors are also minimized when the
total is minimized, our problem reduces to finding the y that minimizes the trace, trace(Pk(y)),
of Pk(y), where the trace of a square matrix is the sum of the elements on its major diagonal.
This optimization is done using a differential calculus approach. Differentiation of matrix functions
is a complex field that we partially formalized and which we cannot cover here, but it is worth
mentioning, in order for the reader to anticipate the non-triviality of this proof, that the y we are
looking for is the solution of the equation

d(trace(Pk(y)))

dy
= 0,

where for a standard function f(y11, y12, . . .) on the elements of the matrix y, such as trace(Pk(y)),
its derivative df/dy is the matrix (df/dyij)ij having the same dimension n × m as y.

Let us detail the optimization process. Firstly, using the Kalman filter equations and noting
that xk − x̂−

k is uncorrelated with the measurement noise vk, we get

Pk(y) = E[((xk − x̂−
k ) − y(zk − z−k ))((xk − x̂−

k ) − y(zk − z−k ))>]
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= E[((In − yHk)(xk − x̂−
k ) − yvk)((In − yHk)(xk − x̂−

k ) − yvk)
>]

= E[(In − yHk)((xk − x̂−
k )(xk − x̂−

k )>)(In − yHk)
> − (In − yHk)((xk − x̂−

k )v>k )y>

− y(vk(xk − x̂−
k )>)(In − yHk)

> + y(vkv
>
k )y>]

= (In − yHk)P
−
k (In − yHk)

> − (In − yHk)E[(xk − x̂−
k )v>k ]y>

− yE[vk(xk − x̂−
k )>](In − yHk)

> + yRky
>

= (In − yHk)P
−
k (In − yHk)

> + yRky
>

= P−
k − yHkP

−
k − P−

k H>
k y> + y(HkP

−
k H>

k + Rk)y
>.

We proceed now to differentiate the trace of Pk(y) with respect to y. In order to do so, we use two
matrix differentiation formulas:

d(trace(yA))

dy
= A> if yA is a square matrix

d(trace(yAy>))

dy
= 2yA if A is a symmetric matrix.

Noting that the matrices P−
k and HkP

−
k H>

k + Rk are symmetric, and that the trace of yHkP
−
k is

equal to the trace of its transpose P−
k H>

k y>, the result is

d(trace(Pk(y)))

dy
= −2(HkP

−
k )> + 2y(HkP

−
k H>

k + Rk).

We now set the derivative equal to zero and solve for the optimal gain. One gets the solution given
by equation (14)

Kk = P−
k H>

k (HkP
−
k H>

k + Rk)
−1,

which is what line 4 in Figure 3 calculates. The above calculations formally involve several thou-
sands of uses of basic properties of matrices and differentiation, as argued in Section 4.

One can now calculate the a posteriori best estimate, x̂k(Kk), and the covariance matrix,
Pk(Kk), associated with the optimal estimate. By routine substitution of the Kalman gain expres-
sion, we get

Pk(Kk) = P−
k − KkHkP

−
k − P−

k H>
k K>

k + Kk(HkP
−
k H>

k + Rk)K
>
k

= P−
k − KkHkP

−
k − P−

k H>
k K>

k + P−
k H>

k K>
k

= P−
k − KkHkP

−
k

= (In − KkHk)P
−
k ,

which is what line 6 in Figure 3 does.
The updated estimate x̂k is easily projected ahead via the transition matrix

x̂−
k+1

= Φkx̂k. (16)

The fact that x̂−
k+1

is the best prior estimate at time k + 1 follows by another assumption, namely
that the best prior estimate at the next step follows the state equation (1) using the best estimate
at the current state, but where the contribution of the process noise wk is ignored. We are justified
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in doing this because the noise wk has zero mean and is not correlated with any one of the previous
w’s.

Finally, we must prove that

P−
k+1

= ΦkPkΦ
>
k + Qk (17)

is the prior estimate error covariance matrix E[(xk+1 − x̂−
k+1

)(xk+1 − x̂−
k+1

)>] at time k + 1. This

is obtained by replacing xk+1 as in equation (1) and x̂−
k+1

as in equation (16), and noting that wk

and xk − x̂k have zerro-crosscorrelation, because wk is the process noise for the steap ahead of time
k.

P−
k+1

= E[(xk+1 − x̂−
k+1

)(xk+1 − x̂−
k+1

)>]

= E[(Φk(xk − x̂k) + wk)(Φk(xk − x̂k) + wk)
>]

= E[Φk((xk − x̂k)(xk − x̂k)
>)Φ>

k + Φk((xk − x̂k)w
>
k ) + (wk(xk − x̂k)

>)Φ>
k + wkw

>
k ]

= ΦkPkΦ
>
k + ΦkE[(xk − x̂k)w

>
k ] + E[wk(xk − x̂k)

>]Φ>
k + Qk

= ΦkPkΦ
>
k + Qk.

2.2 Information Filter

The simple Kalman filter equations can be algebraically manipulated into a variety of forms. An
alternative form that is especially useful is known as the information filter [2], which additionally
assumes that the matrices P−

k , Pk, and Rk admit inverses. One should think of (P −
k )−1 as a

measure of the information content of the a priori estimate, that is, before the new measurement
information is assimilated into the estimate. Then Pk = ∞, that is (P−

k )−1 = 0, corresponds to
infinite uncertainty, or zero information. This leads to the indeterminate form ∞

∞
in the Kalman

gain expression (14), so one can not apply the simple Kalman filter due to rounding errors. The
information filter accomodates this situation. It is based on the following equations:

P−1

k = (P−
k )−1 + H>

k R−1

k Hk (18)

Kk = PkH
>
k R−1

k . (19)

Justification of equation (18) is straightforward: one can simply form the product of the right
sides of equations (15) and (18) and show that this reduces to the identity matrix.

[(In − KkHk)P
−
k ][(P−

k )−1 + H>
k R−1

k Hk]

= [P−
k − P−

k H>
k (HkP

−
k H>

k + Rk)
−1HkP

−
k ][(P−

k )−1 + H>
k R−1

k Hk]

= In − P−
k H>

k [(HkP
−
k H>

k + Rk)
−1 + (HkP

−
k H>

k + Rk)
−1HkP

−
k H>

k R−1

k − R−1

k ]Hk

= In − P−
k H>

k [(HkP
−
k H>

k + Rk)
−1(Im + HkP

−
k H>

k R−1

k ) − R−1

k ]Hk

= In − P−
k H>

k [(HkP
−
k H>

k + Rk)
−1(Rk + HkP

−
k H>

k )R−1

k − R−1

k ]Hk

= In − P−
k H>

k [R−1

k − R−1

k ]Hk

= In,

[(P−
k )−1 + H>

k R−1

k Hk][(In − KkHk)P
−
k ]

= [(P−
k )−1 + H>

k R−1

k Hk][P
−
k − P−

k H>
k (HkP

−
k H>

k + Rk)
−1HkP

−
k ]

= In − H>
k [(HkP

−
k H>

k + Rk)
−1 − R−1

k + R−1

k HkP
−
k H>

k (HkP
−
k H>

k + Rk)
−1)]HkP

−
k

= In − H>
k [(Im + R−1

k HkP
−
k H>

k )(HkP
−
k H>

k + Rk)
−1 − R−1

k ]HkP
−
k

= In − H>
k [R−1

k (Rk + HkP
−
k H>

k )(HkP
−
k H>

k + Rk)
−1 − R−1

k ]HkP
−
k

= In − H>
k [R−1

k − R−1

k ]HkP
−
k

= In.
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Equation (19) gives an alternative expression for the Kalman gain and it can be derived from
equation (14) using (18).

Kk = P−
k H>

k (HkP
−
k H>

k + Rk)
−1

= PkP
−1

k P−
k H>

k [(HkP
−
k H>

k R−1

k + Im)Rk]
−1

= PkP
−1

k P−
k H>

k R−1

k (HkP
−
k H>

k R−1

k + Im)−1

= Pk[(P
−
k )−1 + H>

k R−1

k Hk]P
−
k H>

k R−1

k (HkP
−
k H>

k R−1

k + Im)−1

= Pk(H
>
k R−1

k + H>
k R−1

k HkP
−
k H>

k R−1

k )(HkP
−
k H>

k R−1

k + Im)−1

= PkH
>
k R−1

k (Im + HkP
−
k H>

k R−1

k )(HkP
−
k H>

k R−1

k + Im)−1

= PkH
>
k R−1

k .

Notice that the updated error covariance, Pk, can be computed without first finding the gain,
and that the expression for gain is now involving Pk. Consequently, Kk must be computed after
Pk, so the order in which the Pk and Kk computations appear in this alternative algorithm is
reversed. The matrix P−1

k is often referred to as the information matrix and this gives the name
of the algorithm. Figure 4 shows the information filter loop and intermediate code.

2.3 Extended Kalman Filter

The Kalman filters discussed so far address the general problem of estimating the state x ∈ IRn

of a discrete-time controlled process that is governed by a linear stochastic difference equation.
However, some of the most interesting and successful applications of Kalman filters are non-linear,
i.e., the process and measurement models are given by equations of the form

xk+1 = f(xk, uk) + wk (20)

zk = h(xk) + vk, (21)

where f and h are non-linear functions, uk is a deterministic forcing function (regard it as an
input), and the random vectors wk and vk again represent the process and the measurement noise
and satisfy the same conditions as for the simple Kalman filter.

To simplify computations and to make the problem implementable, one typical technique is to
linearize it about a trajectory that is continually updated with the state estimates resulting from
the measurements. The new filter obtained this way is called extended Kalman filter (or simply
EKF). We will use the same notations for a priori and a posteriori state estimates, and generally
the same conceptual assumptions as for simple Kalman filter; in particular, since the noises wk and
vk have mean 0 and since x̂k and x̂−

k are estimates anyway, one can approximate the a priori state
estimate and measurement prediction vectors as follows:

x̂−
k+1

= f(x̂k, uk), (22)

z−k = h(x̂−
k ). (23)

Let Φk and Hk be the Jacobian matrices of partial derivatives of f and h with respect to x:

Φk = (
δfi

δxj

(x̂k, uk))i,j (24)

Hk = (
δhi

δxj

(x̂−
k ))i,j (25)
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)−1

��Project ahead:
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k
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and invert P−

k+1

66

z0, z1, · · ·

��

Compute gain:
Kk = PkH>

k
R−1

k

uu
Update estimate with

measurement zk:
x̂k = x̂−

k
+ Kk(zk − Hkx̂−

k
)

YY

��
x̂0, x̂1, · · ·

1. input xhatmin(0), Pminus(0);

2. for(k,0,n) {

3. InvP(k) := minv(Pminus(k)) + ((mtrans(H(k)) * minv(R(k))) * H(k));

4. P(k) := minv(InvP(k));

5. gain(k) := P(k) * (mtrans(H(k)) * minv(R(k)));

6. zminus(k) := H(k) * xhatmin(k);

7. xhat(k) := xhatmin(k) + (gain(k) * (z(k) - zminus(k)));

8. xhatmin(k + 1) := Phi(k) * xhat(k);

9. Pminus(k + 1) := ((Phi(k) * P(k)) * mtrans(Phi(k))) + Q(k); }

Figure 4: Information filter loop and intermediate code.

We approximate the non-linear functions f and h with Taylor series expansions retaining only first
order terms:

f(xk, uk) = f(x̂k, uk) + Φk(xk − x̂k), (26)

h(xk) = h(x̂−
k ) + Hk(xk − x̂−

k ). (27)

Then we get the new governing equations that linearize an estimate about equations (22) and (23)

xk+1 = x̂−
k+1

+ Φk(xk − x̂k) + wk, (28)

zk = z−k + Hk(xk − x̂−
k ) + vk. (29)

The basic operation of the EKF is very similar to that of the simple Kalman filter, as shown in
Figure 5.
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k
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k
+ Rk)−1

��
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Project ahead:
x̂−

k+1
= f(x̂k, uk)

P−

k+1
= ΦkPkΦ>

k
+ Qk

66

Update estimate with
measurement zk:

x̂k = x̂−

k
+ Kk(zk − h(x̂−

k
))

��
rr

Compute error covariance
for updated estimate:
Pk = (In − KkHk)P−

k

YY

x̂0, x̂1, · · ·

1. input xhatmin(0), Pminus(0);

2. for(k,0,n) {

3. zminus(k) := h(xhatmin(K));

4. H(K) := Jacob_h(xhatmin(K));

5. gain(k) := (Pminus(k) * mtrans(H(k))) * minv(((H(k) * Pminus(k)) * mtrans(H(k))) + R(k));

6. xhat(k) := xhatmin(k) + (gain(k) * (z(k) - zminus(k)));

7. P(k) := (id(n) - (gain(k) * H(k))) * Pminus(k);

8. xhatmin(k + 1) := f(xhat(k), u(k));

9. Phi(K) := Jacob_f(xhat(K), u(K));

10. Pminus(k + 1) := ((Phi(k) * P(k)) * mtrans(Phi(k))) + Q(k);}

Figure 5: Extended Kalman filter loop and intermediate code.

The optimality proof is also similar to the one for the simple Kalman filter, but there are some
differences. Firstly, in order to calculate Pk(y), we have to use equation (27):

Pk(y) = E[((xk − x̂−
k ) − y(zk − z−k ))((xk − x̂−

k ) − y(zk − z−k ))>]

= E[((xk − x̂−
k ) − y(h(xk) + vk − h(x̂−

k )))((xk − x̂−
k ) − y(h(xk) + wk − h(x̂−

k )))>

= E[((xk − x̂−
k ) − y(Hk(xk − x̂−

k ) + vk))((xk − x̂−
k ) − y(Hk(xk − x̂−

k ) + vk))
>]

... as in the case of the simple Kalman filter

= (In − yHk)P
−
k (In − yHk)

> + yRky
>

= P−
k − yHkP

−
k − P−

k H>
k y> + y(HkP

−
k H>

k + Rk)y
>.

The optimization process proceeds now exactly as for the simple Kalman filter; we get the same
Kalman gain, given by equation (14), and we can calculate x̂k(Kk) and Pk(Kk), as lines 6 and 7 of
the code from Figure 5 do.
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The updated estimate is projected ahead using equation (23). Thus, as for the simple Kalman
filter, the best prior estimate at the next step follows the state equation (20) using the best estimate
at the current state, but where the contribution of the process noise wk is ignored. The proof of
the fact that the a priori estimate error covariance matrix at time k + 1 is

P−
k+1

= ΦkPkΦ
>
k + Qk

follows the one for the simple Kalman filter, using equations (22) and (26) as extra-assumptions:

P−
k+1

= E[(xk+1 − x̂−
k+1

)(xk+1 − x̂−
k+1

)>]

= E[(f(xk, uk) + wk − f(x̂k, uk))(f(xk, uk) + wk − f(x̂k, uk))
>]

= E[(Φk(xk − x̂k) + wk)(Φk(xk − x̂k) + wk)
>]

... as in the case of the simple Kalman filter

= ΦkPkΦ
>
k + Qk.

3 A Framework for Formalizing the Proof

To generate and automatically certify the optimality proofs for the three Kalman filters, we need
to formalize the domain knowledge, which includes matrices, random matrices, functions on ma-
trices, and matrix differentiation. We first discuss the formal language that we chose for this
purpose together with its underlying logic. The reader can see in Appendix A our abstract domain
formalization.

3.1 Maude and Membership Equational Logic

Maude [4] is a freely distributed high-performance executable specification system in the OBJ [6]
family, supporting both rewriting logic [9] and membership equational logic [10]. Because of its
efficient rewriting engine and because of its metalanguage and modularization features, Maude is
an excellent tool to develop executable environments for various logics, models of computation,
theorem provers, and even programming languages.

Membership equational logic (MEL) [10] is a variant of equational logic which, in addition to
atomic equalities t = t′, allows atomic memberships t : s stating that the term t has the sort
s. In Maude, conditional equations and memberships are declared with the keywords ceq and cmb,
respectively, while the unconditional ones with eq and mb. For example, the conditional membership

cmb X / Y : Real if Y =/= 0 .

states that for any reals X and Y, X/Y is a real, or has the sort Real, if Y is non-zero. Sorts are grouped
in kinds and operations are defined only on kinds, but Maude provides convenient syntactic sugar
conventions. For example, a subsort declaration

subsort Nat < Real .

is syntactic sugar for the membership

cmb X : Real if X : Nat .

The operation declaration
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op + : Real Real -> Real .

is syntactic sugar for2

cmb X + Y : Real if X : Real / Y : Real .

[Real] is a shorthand for the kind containing the sort Real; the operation declaration

op / : Real Real -> [Real] .

says that a quotient term might not have a sort, i.e., it might be undefined in a partial algebraic
terminology. There is an automatic translation from partial equational logic, or more precisely from
its more general variant called partial membership equational logic (PMEL), into MEL explored in
detail in [10, 11]. Maude’s implicit support for partiality was a major factor in choosing Maude as a
logic and implementation engine for our certification tools, because all the specifications of abstract
domains that we encountered so far involve partial operators. However, we warn the reader that
Maude does not explicitly support PMEL, i.e., it is a total MEL engine3. That means that, for
example if one declares the equation

eq X / (Y / Z) = (X * Z) / Y .

then one should not expect Maude to implicitly prove that Y / Z is defined before applying the
equation; it is the user’s responsibility to test this, i.e., to use an equation of the form

ceq X / (Y / Z) = (X * Z) / Y if Y / Z : Real .

Since we use partial specifications often and since it is so easy to omit such membership checks, we
have developed an automatic criterion that checks whether a MEL theory is duplex, i.e., if it can
be safely regarded as a specification in PMEL [11].

Our axiom abstract domain presented next, having around 100 axioms, passed the duplex
criterion, so we know that Maude’s total reasoning is sound for our domain.

3.2 Matrices and Random Matrices

Equational reasoning with (random) matrices is extensively used in all state estimation optimality
proofs that we are aware of. In fact, most of the proof steps in our scripts and all our lemmas are
equational. We used two sorts Matrix, MatrixExp for representing matrices and, similarly, two sorts
RandomMatrix, RandomMatrixExp for random matrices. The reason why we had to make this distinction
between (Random)Matrix and (Random)MatrixExp will become clear in the next subsection, on functions
on matrices. The subsort relations between these four sorts are:

subsort Matrix < MatrixExp .

subsort Matrix < RandomMatrix .

subsort MatrixExp < RandomMatrixExp .

subsort RandomMatrix < RandomMatrixExp .

2Together with an appropriate operation declaration on kinds.
3We are not aware of any tool providing explicit executional support for partial equational logics.
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Most of the operations and axioms/lemmas in matrix theory are partial. For example, addition
is defined iff the two matrices have the same dimensions, multiplication is defined iff the number
of columns of the first matrix equals the number of rows of the second, the inverse of a matrix is
defined only if the matrix is square and its determinant is non-zero, and the commutativity and
associativity of addition hold true iff the matrices involved have the same dimensions, etc.... It
was a big benefit, if not the biggest, that Maude provided support for partiality, thus allowing us
to compactly specify matrix theory and do partial proofs. The partial operations of addition and
multiplication are defined as follows:

op _+_ : MatrixExp MatrixExp -> [MatrixExp] .

op _*_ : MatrixExp MatrixExp -> [MatrixExp] .

One example of a total operation is the transpose of a matrix:

op mtrans : MatrixExp -> MatrixExp .

In order to define their semantics and properties, we need two total operations that give the numbers
of columns and rows of a matrix

ops c r : MatrixExp -> MachineInt .

Now we can express definedness of addition and multiplication together with appropriate conditional
equations computing the new columns and rows:

vars P Q R : MatrixExp .

cmb (P + Q) : MatrixExp if (r(P) == r(Q) and c(P) == c(Q)) .

ceq c(P + Q) = c(P) if (P + Q : MatrixExp) .

ceq r(P + Q) = r(P) if (P + Q : MatrixExp) .

cmb (P * Q) : MatrixExp if c(P) == r(Q) .

ceq c(P * Q) = c(Q) if (P * Q : MatrixExp) .

ceq r(P * Q) = r(P) if (P * Q : MatrixExp) .

Axioms relating various operators on matrices are also needed, such as:

ceq mtrans(P * Q) = mtrans(Q) * mtrans(P) if (P * Q : MatrixExp) .

ceq (P * (Q + R)) = ((P * Q) + (P * R)) if (Q + R : MatrixExp and

P * Q : MatrixExp) .

ceq (mtrans(minv(P))) = (minv(mtrans(P))) if (minv(P) : MatrixExp) .

together with more than 60 others, most of them conditional and involving memberships. We have
also defined the expectation of a random matrix as an operation

op E|_| : RandomMatrixExp -> MatrixExp .

vars RP RQ : RandomMatrixExp .

eq (r(E| RP |)) = (r(RP)) .

eq (c(E| RP |)) = (c(RP)) .

There are 7 axioms specifying properties of this operation, some of the most used being

ceq (E| P * RQ |) = (P * E| RQ |) if (P * RQ : RandomMatrixExp) .

ceq (E| RP * Q |) = ( E| RP | * Q) if (RP * Q : RandomMatrixExp) .
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3.3 Functions on Matrices

One step in the optimality proofs is stating that the best estimate of the actual state is a linear
combination of the best prior estimate and the measurement innovation (13). The coefficient of
this linear dependency is calculated such that the error covariance Pk is minimized. Therefore,
before the optimal coefficient is calculated, and in order to calculate it, the best estimate vector is
regarded as a function of the form

λy.(〈prior estimate〉 + y ∗ 〈measurement innovation〉).

In order for this function to be well defined, y must be a matrix having appropriate dimensions.
Hence, we need to formally define functions on matrices together with their properties. We do it
by declaring new sorts, MatrixVar and MatrixFun, the first being a subsort of Matrix, together with
operations for defining functions and for applying them, respectively:

op /\_._ : MatrixVar MatrixExp -> MatrixFun .

op __ : MatrixFun MatrixExp -> [MatrixExp] .

var X : MatrixVar .

vars P R : MatrixExp .

cmb ((/\ X . P)(R)) : MatrixExp if (X + R : MatrixExp) .

We also need an operation

op _in_ : MatrixVar MatrixExp -> Bool .

such that X in P is true iff X appears in the expression of P , and false otherwise. The infix operation
in is defined inductively:

var Y : Matrix .

eq (X in X) = (true) .

ceq (X in Y) = (false) if (X =/= Y).

ceq (X in (P * Q)) = ((X in P) or (X in Q)) if (P * Q : MatrixExp) .

ceq (X in (P + Q)) = ((X in P) or (X in Q)) if (P + Q : MatrixExp) .

...

Hence, we can see that, in order to define it, we need to make the distinction between Matrix and
MatrixExp. That’s why we had to use two sorts for representing matrices. Using the operation
in appropriate (conditional) axioms for functions are specified, also taking into account partiality,
such as:

ceq ((/\ X . X)(R)) = (R) if (X + R : MatrixExp) .

ceq ((/\ X . P)(R)) = (P) if (X + R : MatrixExp and not(X in P)) .

ceq ((/\ X .(P + Q))(R)) = (((/\ X . P)(R)) + ((/\ X . Q)(R)))

if (X + R : MatrixExp and P + Q : MatrixExp) .

among many others.
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3.4 Matrix Differentiation

As we saw in Subsection 2.1, in order to prove that x̂k is the best estimate, under simplifying
assumptions, of the state vector xk at time k, we use a differential calculus approach. Axiom-
atization of functions on matrices with their derivatives can be arbitrarily complicated; our ap-
proach is top-down, i.e., we first define properties by need, use them, and then prove them from
more basic properties when possible. For example, the only property that we used so far link-
ing optimality of estimates to differentiation is that a matrix K minimizes a function λy.P iff
(d(trace(λy.P ))/dy)(K) = 0. For that reason, in order to avoid going into deep axiomatizability
of mathematics, we have just defined a “derived” operation

op d|trace_|/d_ : MatrixFun MatrixVar -> MatrixFun .

which gives directly the derivative of the trace of a function on matrices, and declared some basic
properties of it, such as

ceq ((d|trace(/\ X . X)|/d(X))(R)) = (id(r(X))) if (X + R : MatrixExp) .

ceq ((d|trace(/\ X . P)|/d(X))(R)) = (zero(r(X),c(X)))

if (X + R : MatrixExp and not(X in P)) .

ceq ((d|trace(/\ X . (P + Q))|/d(X))(R)) = (((d|trace(/\ X . P)|/d(X))(R)) +

((d|trace(/\ X . Q)|/d(X))(R)))

if (X + R : MatrixExp and P + Q : MatrixExp) .

We also used two matrix differentiation formulas given by the following conditional equations

ceq (d|trace(/\ X . (X * P))|/d(X)) = (/\ X . (mtrans(P)))

if (X * P : MatrixExp and not(X in P)) .

ceq (d|trace(/\ X . ((X * P) * mtrans(X)))|/d(X)) = (/\ X . (2 * (X * P)))

if (X * P : MatrixExp and P * mtrans(X) : MatrixExp and

mtrans(P) == P and not(X in P)) .

One could, of course, prove these properties from more basic properties of traces, functions and
differentiations, but one would need to add a significant body of mathematical knowledge to the
system. We will eventually do it when our certification system becomes more stable, but for now
we prefer to just give these provable properties as axioms of the abstract domain.

4 Formal Optimality Proofs

In this section we explain how we formalized the informal optimality proofs for the three Kalman
filters, using the axiomatization of the abstract domain in Section 3. This formalization was done
using version 2.3.7 of ITP, an interactive theorem prover implemented in Maude and presented
below.

4.1 The ITP Tool

The ITP tool [3] is an experimental interactive inductive theorem prover for proving properties of
Maude equational specifications, i.e., specifications in membership equational logic with an initial
algebra semantics. The ITP tool has been written entirely in Maude and is in fact an executable
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specification in rewriting logic of the formal inference system that it implements. This inference
system includes a ”structural induction” principle, that allows proving that a property holds in the
initial model of an equational specification by proving that it holds for each constructor whenever
it holds for the arguments of that constructor.

The input of ITP is a pair specification |- sentence, called a goal. Thus, the sentence to be
proved is submitted to ITP as the initial goal, and then this goal is succesively transformed by
controlled rewriting - using the ITP inference rules as rewrite rules - into different sets of subgoals,
until no subgoals are left if the proof succeeds. If the proof succeeds, then the user gets the message
q.e.d.. All (sub-)goals in a proof are labelled with a list of natural numbers separated by dots, the
initial goal being automatically labelled with 1.

The interface of ITP accepts Maude functional modules with labelled equations. There are
more label categories, providing information about the status of an equation, but the most used
are ax> and ax*>.

[ax*> | distr*+]

ceq (P * (Q + R)) = ((P * Q) + (P * R))

if (Q + R : MatrixExp and P * Q : MatrixExp) .

[ax> | zero-*-left]

ceq (zero(N,M) * P) = (zero(N,c(P))) if (r(P) == M) .

The equation should be applied automatically if it is without * (this is the case with the second
equation, labelled zero-*-left ) and only on demand if it is with * (like the first equation, labelled
distr*+). The ITP tool has many commands, but the most important are set, set*, rwr and apply.
To set the *-status of an equation or of a set of equations we use set and set*:

(set distr*+ in (1) .)

(set* zero-*-left in (1) .)

To prove the sentence by automatically applying the equations that are set (that is, the equations
having the label category ax>), we use the rwr command.

(rwr (1) .)

If the sentence can not be automatically proved using set and rwr - which, in general, does not
imply its falsehood - the tool will return some simplified form of the sentence to be proved and
print the message ”the strategy can not be applied.” In these situations we must provide hints by
using the apply command. For example,

(apply distr*+ to (1.2) at (2.2.3) .)

says that the distributivity axiom should be applied to subgoal number 1.2 at position 2.2.3.
Simplifications by rewriting are automatically done after each hint. There are rigorous conventions
in ITP for labelling the equations and the (sub-)goals, and also in accessing positions in terms, but
these are not important for this presentation and may change in the near future as ITP improves,
so we omit them.
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4.2 Specifying the Statistical Models

In order to reason about the codes for the three Kalman filters, one needs the specifications of the
Kalman filters together with all their assumptions. These are needed in addition to the abstract
domain knowledge in Section 3. Therefore, the very first step is to expand the abstract domain
with three specifications, which we denote

Speckf, Specif, Specekf.

The specifications contain operations declaring all the matrices and vectors involved together with
their dimensions, such as, for all three specifications,

ops x z v w : MachineInt -> RandomMatrix .

ops R Q Phi H : MachineInt -> Matrix .

ops n m p : -> MachineInt .

var K : MachineInt .

eq (r(x(K))) = (n) . eq (c(x(K))) = (1) .

eq (r(w(K))) = (n) . eq (c(w(K))) = (1) .

eq (r(Phi(K))) = (n) . eq (c(Phi(K))) = (n) .

eq (r(z(K))) = (m) . eq (c(z(K))) = (1) .

eq (r(v(K))) = (m) . eq (c(v(K))) = (1) .

eq (r(H(K))) = (m) . eq (c(H(K))) = (n) .

...

and, only in the case of the extended Kalman filter,

op u : MachineInt -> Matrix .

op f : RandomMatrix RandomMatrix -> [RandomMatrix] .

op h : RandomMatrix -> [RandomMatrix] .

eq (r(u(K))) = (p) . eq (c(u(K))) = (1) .

vars V1 V2 : RandomMatrix .

cmb (f(V1, V2)) : RandomMatrix

if (r(V1) == n and r(V2) == p and c(V1) == 1 and c(V2) == 1) .

cmb (h(V1)) : RandomMatrix if (r(V1) == n and c(V1) == 1) .

ceq (r(f(V1, V2))) = (n) if (f(V1, V2) : RandomMatrix) .

ceq (c(f(V1, V2))) = (1) if (f(V1, V2) : RandomMatrix) .

ceq (r(h(V1))) = (m) if (h(V1) : RandomMatrix) .

ceq (c(h(V1))) = (1) if (h(V1) : RandomMatrix) .

Other axioms specify model equations/assumptions, such as

[ax*> | KF-next]

eq (x(K + 1)) = ((Phi(K) * x(K)) + w(K)) .

[ax*> | KF-measurement]

eq (z(K)) = ((H(K) * x(K)) + v(K)) .

[ax*> | RK]

eq (R(K)) = (E| v(K) * mtrans(v(K)) |) .

[ax*> | QK]

eq (Q(K)) = (E| w(K) * mtrans(w(K)) |) .
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in Speckf and Specif, and

[ax*> | EKF-next]

eq (x(K + 1)) = (f(x(K), u(K)) + w(K)) .

[ax*> | EKF-measurement]

eq (z(K)) = (h(x(K)) + v(K)) .

in Specekf. Other assumptions that we do not formalize here due to space limitation include
independence of noise, and the fact that the best prior estimate at time k + 1 is the product
between Phi(k) and the best estimate calculated previously at step k. One major problem that
we encountered while developing our proofs was that these and other assumptions not mentioned
here are so well (and easily) accepted by experts that they don’t even make their use explicit in
their informal proofs; this was of course unavoidable in the context of formal proving, so we had to
declare them explicitly as axioms.

The specifications Speckf and Specif for the simple Kalman and information filters have about
45-50 axioms, while Specekf has about 60 axioms.

4.3 Domain-specific Lemmas

We want the formal optimality proofs for the three Kalman filters to be as automatic as possible;
that is, we want to minimize the number of hints (apply commands). We obtained this by using
more domain-specific (matrix theory, in our case) lemmas like, for example

[lem*> | lemma-2]

ceq (((RP * M1) + M2) - (RP * M3)) = ((RP * (M1 - M3))+ M2)

if (r(RP) == r(M2) and c(RP) == r(M1) and c(RP) == r(M3) and c(M1) == c(M2)

and c(M1) == c(M3)) .

This lemma is used 6 times in the three optimality proofs. We used 34 lemmas, which were added
to the abstract domain. In Appendix B we present the lemmas and a table specifying the number
of times each lemma was used for each of the three optimality proofs. As we shall see in Subsection
4.4, the use of these lemmas greatly improved the proof scripts, reducing very much the number of
hints. Since these lemmas are formulated and proved independent of the Kalman filters, they can
be stored in a database together with their proofs; that’s what we intend to do in the future.

4.4 The Annotated Program

In order to machine check the proof of optimality, the proof must be decomposed and linked to the
actual code. This is done by adding the specification of the statistical model at the beginning of the
code and adding appropriate formal statements, or assertions, as annotations between instructions,
so that one can prove the next assertion from the previous ones and the previous code. Proofs are
also added as annotations where needed. Notice that by “proof” we here mean a series of hints
that ITP uses to guide the proof. In this way we obtain three annotated programs, one for each
Kalman filter. The reader can see them in Appendices C, D, and E.

A sketch of the annotated program for the simple Kalman filter is shown in Figure 6, where we
replaced the more formal (and longer) assertions by English (see Appendix C for the full annotated
program). The proof assertions in Figure 6 should be read as follows: proof assertion n is a
proof of assertion n in its current environment. The best we can assert between instructions
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/* Specification of the state estimation problem

... about 45 axioms/assumptions in Maude */

1. input xhatmin(0), Pminus(0);

/* Proof assertion 1: ... */

/* Assertion 1: (in English) xhatmin(0) and Pminus(0) are the

best prior estimate and its error covariance matrix */

2. for(k,0,n) {

/* Assertion 2: (in English) xhatmin(k) and Pminus(k) are the

best prior estimate and ts error covariance matrix */

3. zminus(k) := H(k) * xhatmin(k);

4. gain(k) := (Pminus(k) * mtrans(H(k))) *

minv(((H(k) * Pminus(k)) * mtrans(H(k))) + R(k));

/* Proof assertion 3: ... */

/* Assertion 3: (in English) gain(k) minimizes the error

covariance matrix */

5. xhat(k) := xhatmin(k) + (gain(k) * (z(k) - zminus(k)));

/* Proof assertion 4: ... */

/* Assertion 4: (the main goal) xhat(k) is the best estimate */

6. P(k) := (id(n) - (gain(k) * H(k))) * Pminus(k);

/* Proof assertion 5: ... */

/* Assertion 5: P(k) error covariance matrix of xhat(k) */

7. xhatmin(k + 1) := Phi(k) * xhat(k);

8. P(k + 1) := ((Phi(k) * P(k)) * mtrans(Phi(k))) + Q(k);

/* Proof assertion 2: ... */

}

Figure 6: Annotated program for the simple Kalman filter.

1 and 2 is that xhatmin(0) and Pminus(0) are initially the best prior estimate and error covariance
matrix, respectively. This assertion is an assumption in Speckf and so can be immediately checked.
Between 2 and 3 we assert that xhatmin(k) and Pminus(k) are the best prior estimate and error
covariance matrix, respectively. This is obvious for the first iteration of the loop, but needs to be
proved for the other iterations. Therefore, we do an implicit proof by induction. The assertion
after line 4 is that gain(k) minimizes the a posteriori error covariance matrix. This was the part of
the proof that was the most difficult to formalize. We show in Figure 7 its proof script.
Hence, we first set 44 axioms and lemmas to be applied and after that we simplify automatically
using rwr command. Note that the proof of this assertion is done completely automatically. That is
the benefit of using domain-specific lemmas; we can see that in this proof we use 11 domain-specific
lemmas. The assertion between lines 5 and 6 says that xhat(k) is the best estimate of the actual
state and its proof is the only one that uses a hint. After line 6, we have the assertion that P(k)

is the error covariance matrix of the best estimate; its proof uses 12 domain-specific lemmas, 8 of
them being used also in the proof of assertion after line 4. After line 8, we complete the proof
by induction of assertion between lines 2 and 3. Due to an assumption in Speckf, we can easily
show that xhatmin(k+1) is the best prior estimate at time k+1. The fact that Pminus(k+1) is its error
covariance matrix is also proved automatically, with the help of 2 domain-specific lemmas.

Using domain-specific lemmas, we minimized the number of hints. In a previous proof [15, 14]
for the simple Kalman filter there were used more than 500 apply commands, now we use only one.
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[proof assertion-3]

(set (instruction-1-1 instruction-2 assertion-1-1 assertion-1-2

Estimate KF-measurement zerro-cross_v_x-xhatmin_1

zerro-cross_v_x-xhatmin_2 RK

id*left id*right id-trans distr*mtrans minus-def1 misc-is E- E+

E*left E*right mtrans-E

fun-scalar-mult fun-mult fun-trans fun-def1 fun-def2 minimizes

trace+ trace- tracem-def1 tracem-def2 trace-lemma1

trace-lemma1* trace-lemma2

lemma-1 lemma-2 lemma-3 lemma-4 lemma-5 lemma-6 lemma-7 lemma-8

lemma-9 lemma-10 lemma-11) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[assertion-3]

eq (gain(K)

minimizes

(/\ y . (E| (x(K) - Estimate(K, y)) * mtrans(x(K) - Estimate(K, y)) |)))

= (true) .

---------------------------------------------------------------------- */

Figure 7: Proof script of assertion 3: gain(K) minimizes error covariance matrix.

It took ITP 35 seconds to check all this proof. Taking into account the speed of Maude (3 million
rewrites per second) and pessimistically assuming that its ITP slows it down 1000 times, then we
predict that there are at least 105.000 uses of the axioms and lemmas in the abstract domain and
Speckf in this proof.

As we can see in Appendix D, the proof scripts from the annotated program for the extended
Kalman filter have many similarities with the ones for the simple Kalman filter. We need only one
hint, but we use more domain-specific lemmas. In the case of the information filter (see Appendix
E), because of the increased number of algebraic properties used by this algorithm, we need 3 apply

commands, and we make use of 32 lemmas.

5 Certifying Annotated Kalman Filters

There are various types and levels of certification, including testing and human code review. In this
paper we address certifying conformance of programs to domain-specific properties. The general
problem is known to be intractable, but by using program synthesis to annotate code with assertions
and proof scripts, complex properties can be certified automatically.

Our current certifier uses a combination of theorem proving and proof checking. It takes as
input a PMEL specification of the abstract domain and an annotated program and returns “yes”
or “no”. It extracts proof tasks together with their proof scripts from the annotated program, and
then calls Maude’s ITP tool to validate them. The proof tasks are generated from both annotations
and code, while the proof scripts are extracted from annotations. It answers “yes” if and only if
all the proof scripts are valid for the proof tasks that it generates. Therefore, like in proof carrying
code, the code, the assertions and the proofs are interdependent, so one cannot maliciously modify
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either of them.
The state estimation certifier is very restrictive at this stage, but this is acceptable because

we only use it on programs synthesized with AutoFilter. It only accepts programs written
in a generic matrix-assignment based programming language like the ones in Figures 3, 4, 5 ;
additionally, those programs are not allowed to redefine variables (except the loop counter) and
must consist of exactly one loop which iteratively calculates the best estimate. These programs must
be annotated like in Figure 6, i.e., they must start with an annotation containing the specification
of the Kalman filter for which the subsequent code is claimed, and then contain lines of code, proof
scripts and assertions. All the annotations use directly Maude and/or ITP notation. Each assertion
that cannot be proved by straightforward rewriting should come with its proof script annotation.
This simple approach works because our synthesized state estimation programs are not concurrent.

The certifier works as follows. It first extends the abstract domain specification with the speci-
fication of the statistical model (extracted from the beginning of the annotated program). Then it
follows the steps of a proof by mathematical induction on k, the loop index. More precisely, it first
proof checks the first assertion in the code in which it replaces k by 0. Then it incrementally visits
each line of code in the loop, adding the assignments to the specification as ordinary MEL equations
and proof checking the assertions. In order to proof check an assertion, it calls the ITP tool with
the current specification, the assertion, and the proof script provided in the code as annotation. At
the end of the loop, it also proof checks the first assertion in the loop in which k is replaced by k+1.

Therefore, our current certifier simulates the execution of the code modifying its environment
(specification) and checking a provided proof whenever an assertion is found. Assuming that the
abstract domain and the Kalman filters are correctly specified, then for any annotated program as
above our certifier returns “yes” if and only if the program calculates the best estimate at each
iteration. Notice that the certifier was specifically designed to be totally independent from the
synthesis engine. The proofs and the annotations are orders of magnitude larger than the real
code, but fortunately, they can be automatically generated by the synthesis engine once generic
proofs are provided with the program schemas.

6 Conclusions and Future Work

In this paper, we built a certifier for three Kalman filters: simple Kalman filter, information filter
and extended Kalman filter, extending previous work done by Roşu and Whittle [15, 14] for the
simple Kalman filter. The language we chose for this purpose was Maude, a high-performance
executable specification system in the OBJ family. For the optimality proofs for the three Kalman
filters we used ITP, an inductive theorem prover implemented in Maude.

We used many domain-specific (matrix theory) lemmas, which were formulated and proved
independent of the Kalman filters, so they can be stored in a database together with their proofs.
With the help of these lemmas, we automatized the proofs, minimizing the number of hints. Thus,
we had only 5 hints in the optimality proofs for all three Kalman filters, while in [15, 14] there were
used more than 400 hints only for the simple Kalman filter.

The certifier used in our paper is itself a substantial program, including the Maude system
and the ITP tool. Maude and ITP are used both to generate the proofs and to check them. For
practical purposes, a certifier must be as simple as possible. Certification authorities will only trust
a certification tool if it has been formally verified, and hence it must be small. This means that
whilst Maude and ITP are good generic engines for developing domain-specific proofs scripts of
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individual schemas, the final product will most likely incorporate a kernel certifier with a minimal
knowledge base and minimal proving technology.

Our long term goal is to develop an automated state estimation certifier which:

• is simple, so that it can be easily validated by ordinary code reviewers;
• is general, so it works on a large variety of programs;
• reduces the amount of domain-specific knowledge to be trusted to a few easily readable

properties, so that it can be validated by domain experts;
• is independent from the domain-specific synthesis system, so that the likelihood that the two

systems have common abstract domain errors is minimized and therefore can be safely used
together.

There are sensible trade-offs between these desired features. For example, if the certifier uses a
specialized theorem prover then the synthesis engine can generate fewer and simpler annotations,
but the certifier is itself complex and the certification process can take a long time. On the other
hand, if the certifier is a simple proof checker then certification can be done relatively quickly and
can be more easily accepted even by skeptical users, but one needs to generate very detailed proofs
of correctness together with the code.
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Meseguer, and José Quesada. Maude: specification and programming in rewriting logic. SRI
International, January 1999, http://maude.csl.sri.com.

[5] Compaq. Extended Static Checking for Java, 2000. URL: www.research.compaq.com/SRC/esc.
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Appendix A

--- --------------------------------------------------

--- ABSTRACT DOMAIN FORMALIZATION---

--- --------------------------------------------------

fmod DOMAIN is

including MACHINE-INT .

sorts Real .

sorts Matrix MatrixExp MatrixExp? .

sorts RandomMatrix RandomMatrixExp RandomMatrixExp? .

subsort MachineInt < Real .

subsort Matrix < MatrixExp .

subsort MatrixExp < MatrixExp? .

subsort Matrix < MatrixExp? .

subsort RandomMatrix < RandomMatrixExp .

subsort RandomMatrixExp < RandomMatrixExp? .

subsort RandomMatrix < RandomMatrixExp? .

subsort Matrix < RandomMatrix .

subsort Matrix < RandomMatrixExp .

subsort Matrix < RandomMatrixExp? .

subsort MatrixExp < RandomMatrixExp .

subsort MatrixExp < RandomMatrixExp? .

subsort MatrixExp? < RandomMatrixExp? .

ops c r : RandomMatrixExp -> MachineInt .

vars RP RQ RR : RandomMatrixExp .

vars M1 M2 M3 M4 M5 : RandomMatrixExp .

vars P Q R : MatrixExp .

vars M N N1 : MachineInt .

op zero : MachineInt MachineInt -> Matrix .

eq (r(zero(N,M))) = (N) .

eq (c(zero(N,M))) = (M) .

op _+_ : RandomMatrixExp RandomMatrixExp -> RandomMatrixExp? .

op _+_ : MatrixExp MatrixExp -> MatrixExp? .

cmb (RP + RQ) : RandomMatrixExp if (r(RP) == r(RQ) and c(RP) == c(RQ)) .

cmb ( P + Q) : MatrixExp if (r( P) == r( Q) and c( P) == c( Q)) .

ceq (r(RP + RQ)) = (r(RP)) if (RP + RQ : RandomMatrixExp) .

ceq (c(RP + RQ)) = (c(RP)) if (RP + RQ : RandomMatrixExp) .

[ax*> | assoc+]

ceq ((RP + RQ) + RR) = (RP + (RQ + RR))

if (RP + RQ : RandomMatrixExp and RQ + RR : RandomMatrixExp) .

[ax*> | comm+]

ceq (RP + RQ) = (RQ + RP) if (RP + RQ : RandomMatrixExp) .

[ax> | zero-+-left]

ceq (zero(N,M) + RP) = (RP) if (r(RP) == N and c(RP) == M) .

[ax> | zero-+-right]

ceq (RP + zero(N,M)) = (RP) if (r(RP) == N and c(RP) == M) .
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op -_ : RandomMatrixExp -> RandomMatrixExp .

op -_ : MatrixExp -> MatrixExp .

eq (r(- RP)) = (r(RP)) .

eq (c(- RP)) = (c(RP)) .

[ax*> | minus-def1]

eq ((- RP) + RP) = (zero(r(RP),c(RP))) .

[ax*> | minus-idemp]

eq (- (- RP)) = (RP) .

[ax*> | minus-suma]

eq (- (RP + RQ)) = ((- RP) + (- RQ)) .

op _-_ : RandomMatrixExp RandomMatrixExp -> RandomMatrixExp? .

op _-_ : MatrixExp MatrixExp -> MatrixExp? .

[ax*> | minus]

ceq (RP - RQ) = (RP + (- RQ)) if (r(RP) == r(RQ) and c(RP) == c(RQ)) .

cmb (RP - RQ) : RandomMatrixExp if (r(RP) == r(RQ) and c(RP) == c(RQ)) .

cmb ( P - Q) : MatrixExp if (r( P) == r( Q) and c( P) == c( Q)) .

ceq (RP - zero(N, M)) = (RP) if (r(RP) == N and c(RP) == M) .

ceq (zero(N, M) - RP) = (- RP) if (r(RP) == N and c(RP) == M) .

ceq (r(RP - RQ)) = (r(RP)) if (RP + RQ : RandomMatrixExp) .

ceq (c(RP - RQ)) = (c(RP)) if (RP + RQ : RandomMatrixExp) .

[ax*> | minus-def2]

eq (RP - RP) = (zero(r(RP),c(RP))) .

op id : MachineInt -> Matrix .

eq (c(id(N))) = (N) .

eq (r(id(N))) = (N) .

op _*_ : RandomMatrixExp RandomMatrixExp -> RandomMatrixExp? .

op _*_ : MatrixExp MatrixExp -> MatrixExp? .

cmb (RP * RQ) : RandomMatrixExp if (c(RP) == r(RQ)) .

cmb ( P * Q) : MatrixExp if (c( P) == r( Q)) .

ceq (r(RP * RQ)) = (r(RP)) if (RP * RQ : RandomMatrixExp) .

ceq (c(RP * RQ)) = (c(RQ)) if (RP * RQ : RandomMatrixExp) .

[ax> | zero-*-left]

ceq (zero(N,M) * RP) = (zero(N, c(RP))) if (r(RP) == M) .

[ax> | zero-*-right]

ceq (RP * zero(N,M)) = (zero(r(RP), M)) if (c(RP) == N) .

[ax*> | id*left]

ceq (id(N) * RP) = (RP) if (r(RP) == N) .

[ax*> | id*right]

ceq (RP * id(N)) = (RP) if (c(RP) == N) .

[ax*> | assoc*]

ceq ((RP * RQ) * RR) = (RP * (RQ * RR))

if (RP * RQ : RandomMatrixExp and RQ * RR : RandomMatrixExp) .

[ax*> | distr*+]

ceq (RP * (RQ + RR)) = ((RP * RQ) + (RP * RR))

if (RQ + RR : RandomMatrixExp and RP * RQ : RandomMatrixExp) .

[ax*> | distr+*]

ceq ((RQ + RR) * RP) = ((RQ * RP) + (RR * RP))

if (RQ + RR : RandomMatrixExp and RQ * RP : RandomMatrixExp) .

[ax*> | distr-*left]

eq ((- RP) * RQ) = (- (RP * RQ)) .

[ax*> | distr-*right]

eq (RP * (- RQ)) = (- (RP * RQ)) .
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op _*_ : MachineInt RandomMatrixExp -> RandomMatrixExp .

op _*_ : MachineInt MatrixExp -> MatrixExp .

eq (r(N * RP)) = (r(RP)) .

eq (c(N * RP)) = (c(RP)) .

eq (N1 * zero(N,M)) = (zero(N,M)) .

[ax*> | scalar*-1]

ceq ((N * RP) * RQ) = (N * (RP * RQ)) if (RP * RQ : RandomMatrixExp) .

[ax*> | scalar*-2]

ceq (RP * (N * RQ)) = (N * (RP * RQ)) if (RP * RQ : RandomMatrixExp) .

[ax*> | scalar+]

ceq (N * (RP + RQ)) = ((N * RP) + (N * RQ)) if (RP + RQ : RandomMatrixExp) .

[ax*> | scalar-]

ceq (N * (RP - RQ)) = ((N * RP) - (N * RQ)) if (RP + RQ : RandomMatrixExp) .

[ax*> | scalar-minus]

eq (N * (- RP)) = (- (N * RP)) .

[ax*> | scalar-trans]

eq (mtrans(N * RP)) = (N * mtrans(RP)) .

op mtrans : RandomMatrixExp -> RandomMatrixExp .

op mtrans : MatrixExp -> MatrixExp .

eq (r(mtrans(RP))) = (c(RP)) .

eq (c(mtrans(RP))) = (r(RP)) .

[ax*> | id-trans]

eq (mtrans(id(N))) = (id(N)) .

[ax*> | mtrans-minus]

eq (mtrans(- RP)) = (- mtrans(RP)) .

[ax*> | mtrans-idemp]

eq (mtrans(mtrans(RP))) = (RP) .

[ax*> | distr+mtrans]

ceq (mtrans(RP + RQ)) = (mtrans(RP) + mtrans(RQ))

if (RP + RQ : RandomMatrixExp) .

[ax*> | distr*mtrans]

ceq (mtrans(RP * RQ)) = (mtrans(RQ) * mtrans(RP))

if (RP * RQ : RandomMatrixExp) .

op minv : RandomMatrixExp -> RandomMatrixExp? .

op minv : MatrixExp -> MatrixExp? .

ceq (r(minv(RP))) = (r(RP)) if (minv(RP) : RandomMatrixExp) .

ceq (c(minv(RP))) = (c(RP)) if (minv(RP) : RandomMatrixExp) .

cmb (minv(minv(RP))) : RandomMatrixExp if (minv(RP)) : MatrixExp .

cmb (minv(minv(P))) : MatrixExp if (minv(P)) : MatrixExp .

[ax*> | minv-def1]

ceq ((minv(RP)) * RP) = (id(r(RP))) if (minv(RP) : RandomMatrixExp) .

[ax*> | minv-def2]

ceq (RP * (minv(RP))) = (id(r(RP))) if (minv(RP) : RandomMatrixExp) .

[ax*> | mtrans-inv]

ceq (mtrans(minv(RP))) = (minv(mtrans(RP))) if (minv(RP) : RandomMatrixExp) .

[ax*> | idemp-inv]

ceq (minv(minv(RP))) = (RP) if (minv(RP) : RandomMatrixExp) .

[ax*> | minv-of-matrix]

ceq (minv(RP)) = (RQ) if (RP * RQ is id(r(RP)) and RQ * RP is id(r(RP))) .
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op E|_| : RandomMatrixExp -> MatrixExp .

eq (r(E| RP |)) = (r(RP)) .

eq (c(E| RP |)) = (c(RP)) .

[ax*> | E+]

ceq (E| RP + RQ |) = (E| RP | + E| RQ |) if (RP + RQ : RandomMatrixExp) .

[ax*> | Eopus]

eq (E| - RP |) = (- E| RP |) .

[ax*> | E-]

ceq (E| RP - RQ |) = (E| RP | - E| RQ |) if (RP + RQ : RandomMatrixExp) .

[ax*> | Emtrans]

eq (E| mtrans(RP) |) = (mtrans(E| RP |)) .

[ax*> | mtrans-E]

eq (mtrans(E| RP * mtrans(RP) |)) = (E| RP * mtrans(RP) |) .

[ax*> | E*left]

ceq (E| P * RQ |) = (P * E| RQ |) if (P * RQ : RandomMatrixExp) .

[ax*> | E*right]

ceq (E| RP * Q |) = ( E| RP | * Q) if (RP * Q : RandomMatrixExp) .

sorts MatrixVar MatrixFun .

subsort MatrixVar < Matrix .

subsort MatrixVar < MatrixExp .

subsort MatrixVar < MatrixExp? .

subsort MatrixVar < RandomMatrix .

subsort MatrixVar < RandomMatrixExp .

subsort MatrixVar < RandomMatrixExp? .

--- X in P----

--- here is the only place where we need the distinction

--- between Matrix and MatrixExp: in-2.

op _in_ : MatrixVar RandomMatrixExp -> Bool .

var RY : RandomMatrix .

[ax> | in-1]

eq (X in X) = (true) .

[ax> | in-2]

ceq (X in RY) = (false) if (X =/= RY) .

[ax> | in-3]

ceq (X in (RP * RQ)) = ((X in RP) or (X in RQ)) if (RP * RQ : RandomMatrixExp) .

[ax> | in-4]

ceq (X in (RP + RQ)) = ((X in RP) or (X in RQ)) if (RP + RQ : RandomMatrixExp) .

[ax> | in-5]

ceq (X in (RP - RQ)) = ((X in RP) or (X in RQ)) if (RP + RQ : RandomMatrixExp) .

[ax> | in-6]

eq (X in (N * RP)) = (X in RP) .

[ax> | in-7]

eq (X in (mtrans(RP))) = (X in RP) .

[ax> | in-8]

eq (X in (E| RP |)) = (X in RP) .

op /\_._ : MatrixVar MatrixExp -> MatrixFun .

op __ : MatrixFun MatrixExp -> MatrixExp? .

var X : MatrixVar .

cmb ((/\ X . P)(R)) : MatrixExp if (X + R : MatrixExp) .

[ax*> | fun-def1]

ceq ((/\ X . X)(R)) = (R) if (X + R : MatrixExp) .
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[ax*> | fun-def2]

ceq ((/\ X . P)(R)) = (P) if (X + R : MatrixExp and not(X in P)) .

[ax*> | fun-sum]

ceq ((/\ X . (P + Q))(R)) = (((/\ X . P)(R)) + ((/\ X . Q)(R)))

if (P + Q : MatrixExp and X + R : MatrixExp) .

[ax*> | fun-scalar-mult]

ceq ((/\ X . (N * P))(R)) = (N * ((/\ X . P)(R))) if (X + R : MatrixExp).

[ax*> | fun-mult]

ceq ((/\ X . (P * Q))(R)) = (((/\ X . P)(R)) * ((/\ X . Q)(R)))

if (P * Q : MatrixExp and X + R : MatrixExp) .

[ax*> | fun-minus]

ceq ((/\ X . (- P))(R)) = (- ((/\ X . P)(R)))

if (X + R : MatrixExp) .

[ax*> | fun-trans]

ceq ((/\ X . (mtrans(P)))(R)) = (mtrans((/\ X . P)(R)))

if (X + R : MatrixExp) .

op d|trace_|/d_ : MatrixFun MatrixVar -> MatrixFun .

[ax*> | tracem-def1]

ceq ((d|trace(/\ X . X)|/d(X))(R)) = (id(r(X))) if (X + R : MatrixExp) .

[ax*> | tracem-def2]

ceq ((d|trace(/\ X . P)|/d(X))(R)) = (zero(r(X),c(X)))

if (X + R : MatrixExp and not(X in P)) .

[ax*> | trace+]

ceq ((d|trace(/\ X . (P + Q))|/d(X))(R)) =

(((d|trace(/\ X . P)|/d(X))(R)) + ((d|trace(/\ X . Q)|/d(X))(R)))

if (X + R : MatrixExp and P + Q : MatrixExp) .

[ax*> | trace-]

ceq ((d|trace(/\ X . (P - Q))|/d(X))(R)) =

(((d|trace(/\ X . P)|/d(X))(R)) - ((d|trace(/\ X . Q)|/d(X))(R)))

if (X + R : MatrixExp and P + Q : MatrixExp) .

[ax*> | trace-lemma1]

ceq (d|trace(/\ X . (X * P))|/d(X)) = (/\ X . (mtrans(P)))

if (X * P : MatrixExp and not(X in P)) .

[ax*> | trace-lemma2]

ceq (d|trace(/\ X . ((X * P) * mtrans(X)))|/d(X)) = (/\ X . (2 * (X * P)))

if (X * P : MatrixExp and P * mtrans(X) : MatrixExp and

mtrans(P) == P and not(X in P)) .

[ax*> | trace-lemma1*]

ceq (d|trace(/\ X . (P * mtrans(X)))|/d(X)) = (/\ X . P)

if (P * mtrans(X) : MatrixExp and not(X in P)) .

op _minimizes_ : MatrixExp MatrixFun -> Bool .

[ax*> | minimizes]

eq (Q minimizes (/\ X . P)) =

((d|trace(/\ X . P)|/d(X))(Q) is zero(r(X),c(X))) .

op _is_ : MatrixExp MatrixExp -> Bool .

[ax*> | misc-is]

eq (P is P) = (true) .

cmb (minv((M1 * (M2 * minv(M3))) + id(N))) : MatrixExp

if (N == r(M3) and

minv(M3) : MatrixExp and minv((M1 * M2) + M3) : MatrixExp) .

endfm
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Appendix B

--- ---------------------------------------

--- LEMMAS

--- ---------------------------------------

[lem*> | lemma-1]

ceq (RP - (RQ + RR)) = ((RP - RQ) - RR)

if (r(RP) == r(RQ) and r(RQ) == r(RR) and c(RP) == c(RQ)

and c(RQ) == c(RR)) .

[lem*> | lemma-2]

ceq (((RP * M1) + M2) - (RP * M3)) = ((RP * (M1 - M3))+ M2)

if (r(M2) == r(RP) and r(M1) == c(RP) and r(M3) == c(RP)

and c(M2) == c(M1) and c(M3) == c(M1)) .

[lem*> | lemma-3]

ceq (RP * ((RQ * (M1 - M2)) + RR )) = (((RP * RQ) * (M1 - M2)) + ( RP * RR))

if (c(RP) == r(RQ) and c(RQ) == r(M1) and r(M1) == r(M2) and

c(M1) == c(M2) and c(M1) == c(RR) and r(RQ) == r(RR)) .

[lem*> | lemma-4]

ceq ((M1 - M2) - ((RP * RQ) * (M1 - M2))) = ((id(r(M1)) - (RP * RQ)) * (M1 - M2))

if (r(M1) == r(M2) and c(M1) == c(M2) and c(RP) == r(RQ) and r(RP) == r(M1)

and c(RQ) == r(M1)) .

[lem*> | lemma-5]

ceq (((RP * (M1 - M2)) - (RQ * RR)) * mtrans((RP * (M1 - M2)) - (RQ * RR))) =

(((((RP * ((M1 - M2) * mtrans(M1 - M2))) * mtrans(RP)) +

((RQ * (RR * mtrans(RR))) * mtrans(RQ))) -

((RP * ((M1 - M2) * mtrans(RR))) * mtrans(RQ))) -

((RQ * (RR * mtrans(M1 - M2))) * mtrans(RP)))

if (r(M1) == r(M2) and c(M1) == c(M2) and c(RP) == r(M1) and c(RQ) == r(RR)

and r(RP) == r(RQ) and c(M1) == c(RR)) .

[lem*> | lemma-6]

ceq (((M1 - (M2 * M3) ) * RP) * mtrans(M1 - (M2 * M3) )) =

(((((M1 * RP ) * mtrans(M1)) - ((( M1 * RP) * mtrans(M3)) * mtrans(M2))) -

(M2 * ((M3 * RP) * mtrans(M1)))) +

((M2 * ( (M3 * RP) * mtrans(M3))) * mtrans(M2)))

if (c(M2) == r(M3) and r(M1) == r(M2) and c(M1) == c(M3) and

c(M1) == r(RP) and c(RP) == c(M1)) .

[lem*> | lemma-7]

ceq ((mtrans(mtrans(RP))) * (RQ * RR)) = ((RP * RQ) * RR)

if (c(RQ) == r(RR) and c(RP) == r(RQ)) .

[lem*> | lemma-8]

ceq ((N * (RP * M1)) + (N * (RP * M2))) = (N * (RP * (M1 + M2)))

if (c(RP) == r(M1) and r(M1) == r(M2) and c(M1) == c(M2)) .

[lem*> | lemma-9]

ceq ((((- RP - RQ) + RR) + M1)) = (- (RP + RQ) + (RR + M1))

if (c(RP) == c(RQ) and r(RP) == r(RQ) and c(RR) == c(RQ) and r(RR) == r(RQ)

and c(M1) == c(RQ) and r(M1) == r(RQ)) .

[lem*> | lemma-10]

ceq (((RP * RQ) * minv(M1)) * M1) = (RP * RQ)

if (c(RP) == r(RQ) and c(M1) == r(M1) and minv(M1) : RandomMatrixExp and c(RQ) == r(M1)) .
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[ax*> | lemma-11]

eq (RP + RP) = (2 * RP) .

[lem*> | lemma-12]

ceq ((RR + (((RP * M1) * RQ) * M3)) + (((RP * M2) * RQ) * M3)) =

(RR + (((RP * (M1 + M2)) * RQ) * M3))

if (c(RR) == c(M3) and r(RR) == r(RP) and c(RP) == r(M1) and c(M1) == r(RQ)

and c(RQ) == r(M3) and c(RP) == r(M2) and c(M2) == r(RQ)) .

[lem*> | lemma-13]

ceq (RP * (RQ * (mtrans(mtrans(RR)) * M1))) = ((RP * RQ) * (RR * M1))

if (c(RP) == r(RQ) and c(RQ) == r(RR) and c(RR) == r(M1)) .

[lem*> | lemma-14]

ceq ((RP - RQ) + RQ) = (RP)

if (r(RP) == r(RQ) and c(RP) == c(RQ)) .

[lem*> | lemma-15]

ceq (RP - (RQ * (RR * RP))) = ((id(r(RP)) - (RQ * RR)) * RP)

if (r(RP) == r(RQ) and c(RQ) == r(RR) and c(RR) == r(RP)) .

[lem*> | lemma-16]

ceq (((RP * (M1 - M2)) + RQ) * mtrans((RP * (M1 - M2)) + RQ )) =

((((RP * ((M1 - M2) * mtrans(M1 - M2))) * mtrans(RP)) + (RQ * mtrans(RQ))) +

((RP * ((M1 - M2) * mtrans(RQ))) + ((RQ * mtrans(M1 - M2)) * mtrans(RP))))

if (c(RP) == r(M1) and r(M1) == r(M2) and c(M1) == c(M2) and r(RP) == r(RQ)

and c(M1) == c(RQ)) .

[lem*> | lemma-17]

ceq (((RP + RQ) + RR ) - RP) = (RQ + RR)

if (c(RP) == c(RQ) and r(RP) == r(RQ) and c(RR) == c(RQ) and r(RR) == r(RQ)) .

[lem*> | lemma-18]

ceq ((M1 * M2) * minv(M3 + M4)) = ((RP * ((minv(RP) * M1) * (M2 * minv(RQ)))) *

(RQ * minv(M3 + M4)))

if (c(M1) == r(M2) and c(M2) == r(M3) and c(M3) == c(M4) and r(M3) == r(M4)

and c(M3) == r(M3) and minv(M3 + M4) : RandomMatrixExp and c(RP) == r(RP)

and minv(RP) : RandomMatrixExp and c(RQ) == r(RQ)

and minv(RQ) : RandomMatrixExp and c(RP) == r(M1) and c(RQ) == r(M3)) .

[lem*> | lemma-19]

ceq ((id(N) + ((M1 * M2 ) * M3)) * M1) = (M1 * (id(c(M1)) + ((M2 * M3) * M1)))

if (r(M1) == (N) and c(M3) == r(M1) and c(M1) == r(M2) and c(M2) == r(M3)) .

[lem*> | lemma-20]

ceq (M1 * minv((M2 * M3) + M1)) = (minv((M2 * (M3 * minv(M1))) + id(r(M1))))

if (c(M1) == r(M1) and minv(M1) : RandomMatrixExp and c(M2) == r(M3) and r(M2) == r(M1)

and c(M3) == c(M1) and minv((M2 * M3) + M1) : RandomMatrixExp) .

[lem*> | lemma-21]

ceq ((M3 * (M4 * (M1 + M2))) * minv(M2 + M1)) = (M3 * M4)

if (c(M3) == r(M4) and c(M4) == r(M1) and r(M1) == r(M2) and c(M1) == c(M2)

and minv(M2 + M1) : RandomMatrixExp) .

[lem*> | lemma-22]

ceq (((M1 - M2) * RP) * (M3 + M4)) = ((M1 * (RP * M3)) + ((M1 * (RP * M4)) -

((M2 * (RP * M3)) + (M2 * (RP * M4)))))

if (r(M1) == r(M2) and c(M1) == c(M2) and c(M1) == r(RP) and c(RP) == r(M3)

and r(M3) == r(M4) and c(M3) == c(M4)) .

[lem*> | lemma-23]

ceq (((M1 * RP) * M2) + (((M1 * RP) * M3) * RQ)) = ((M1 * RP) * (M2 + (M3 * RQ)))

if (c(M1) == r(RP) and c(RP) == r(M2) and c(RP) == r(M3) and c(M3) == r(RQ)

and c(RQ) == c(M2)) .

[lem*> | lemma-24]

ceq (M1 + (M2 * (M3 * (M4 * M1)))) = ((id(r(M1)) + ((M2 * M3) * M4)) * M1)

if (r(M1) == r(M2) and c(M2) == r(M3) and c(M3) == r(M4) and c(M4) == r(M1)) .

[lem*> | lemma-25]
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ceq (id(N) + (M1 * (M2 * minv(RP)))) = ((RP + (M1 * M2)) * minv(RP))

if (r(RP) == (N) and r(M1) == (N) and c(M1) == r(M2) and c(M2) == r(RP) and c(RP) == (N)

and minv(RP): RandomMatrixExp ) .

[lem*> | lemma-26]

ceq (((M1 * M2) * (minv(RP + RQ))) * (((RQ + RP) * M3) * M4)) = (M1 * ((M2 * M3) * M4))

if (c(M1) == r(M2) and c(M2) == r(RP) and r(RP) == r(RQ) and c(RP) == c(RQ)

and r(RP) == c(RP) and c(RP) == r(M3) and c(M3) == r(M4)

and minv(RP + RQ) : RandomMatrixExp) .

[lem*> | lemma-27]

ceq ((M1 + M2) * ((M3 - M4) * RP)) = (((M1 * M3) * RP) + (((M2 * M3) * RP) -

(((M1 * M4) * RP) + ((M2 * M4) * RP))))

if (r(M1) == r(M2) and c(M1) == c(M2) and c(M1) == r(M3) and r(M3) == r(M4)

and c(M3) == c(M4) and c(M4) == r(RP)) .

[lem*> | lemma-28]

ceq (minv(RP) * ((( RP * M1) * M2) * M3)) = ((M1 * M2) * M3)

if (r(RP) == c(RP) and minv(RP) : RandomMatrixExp and c(RP) == r(M1) and c(M2) == r(M3)) .

[lem*> | lemma-29]

ceq ((((RP * M1) * M2) * RQ) + ((((RP * M3) * M4) * M5) * RQ)) = ((RP * ((M1 * M2) +

((M3 * M4) * M5))) * RQ)

if (c(RP) == r(M1) and c(M1) == r(M2) and c(M2) == r(RQ) and c(RP) == r(M3)

and c(M3) == r(M4) and c(M4) == r(M5) and c(M5) == r(RQ)) .

[lem*> | lemma-30]

ceq ((RP * M1) + (M3 * ((M4 * RP) * M1))) = (((id(r(RP)) + (M3 * M4)) * RP) * M1)

if (c(RP) == r(M1) and r(RP) == r(M3) and c(M3) == r(M4) and c(M4) == r(RP)) .

[lem*> | lemma-31]

ceq (id(N) + ((minv(RP)* M1) * (M2 * M3))) = (minv(RP)* (RP + (((M1 * M2) * M3))))

if (c(RP) == r(RP) and r(RP) == (N) and minv(RP) : RandomMatrixExp and c(RP) == r(M1)

and c(M1) == r(M2) and c(M2) == r(M3)) .

[lem*> | lemma-32]

ceq ((M1 * (RP + RQ)) * minv(RQ + RP)) = (M1)

if (c(M1) == r(RP) and r(RP) == r(RQ) and c(RP) == c(RQ)

and minv(RQ + RP) : RandomMatrixExp) .

[lem*> | lemma-33]

ceq ((((M1 * M2) * M3) * M4) - ((M1 * (M2 * M3)) * M4)) = (zero(r(M1), c(M4)))

if (c(M1) == r(M2) and c(M2) == r(M3) and c(M3) == r(M4)) .

[lem*> | lemma-34]

ceq ((minv(M1) + M2) * M1) = (id(r(M1)) + (M2 * M1))

if (r(M1) == c(M1) and minv(M1) : RandomMatrixExp and r(M1) == r(M2) and c(M1) == c(M2)) .
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Lemma KF IF EKF

lemma-1 2 2 2
lemma-2 3 3 3
lemma-3 2 2 2
lemma-4 2 2 2
lemma-5 2 2 2
lemma-6 2 2 2
lemma-7 2 2 2
lemma-8 1 1 1
lemma-9 1 1 1
lemma-10 2 2 2
lemma-11 1 1 1
lemma-12 1 1 1
lemma-13 1 1 1
lemma-14 1 1 1
lemma-15 1 1 1
lemma-16 1 1 1
lemma-17 0 0 3
lemma-18 0 1 0
lemma-19 0 1 0
lemma-20 0 1 0
lemma-21 0 1 0
lemma-22 0 1 0
lemma-23 0 1 0
lemma-24 0 1 0
lemma-25 0 1 0
lemma-26 0 1 0
lemma-27 0 1 0
lemma-28 0 1 0
lemma-29 0 1 0
lemma-30 0 1 0
lemma-31 0 1 0
lemma-32 0 1 0
lemma-33 0 1 0
lemma-34 0 1 0
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Appendix C

/* --------------------------------------------------

--- Kalman Filter Specification

--- ----------------------------------------------

--- 44 axioms---

---initial equations---

ops x z v w : MachineInt -> RandomMatrix .

ops n m k : -> MachineInt .

ops Phi H : MachineInt -> Matrix .

var K : MachineInt .

eq (r(x(K))) = (n) . eq (c(x(K))) = (1) .

eq (r(z(K))) = (m) . eq (c(z(K))) = (1) .

eq (r(v(K))) = (m) . eq (c(v(K))) = (1) .

eq (r(w(K))) = (n) . eq (c(w(K))) = (1) .

eq (r(Phi(K))) = (n) . eq (c(Phi(K))) = (n) .

eq (r(H(K))) = (m) . eq (c(H(K))) = (n) .

[ax*> | KF-next]

eq (x(K + 1)) = ((Phi(K) * x(K)) + w(K)) .

[ax*> | KF-measurement]

eq (z(K)) = ((H(K) * x(K)) + v(K)) .

---initial suppositions---

ops Q R : MachineInt -> Matrix .

[ax*> | RK]

eq (R(K)) = (E| v(K) * mtrans(v(K)) |) .

[ax*> | QK]

eq (Q(K)) = (E| w(K) * mtrans(w(K)) |) .

var J : MachineInt .

[ax*> | white_noise_w_1]

eq (E| w(K) |) = (zero(n,1)) .

[ax*> | white_noise_v_1]

eq (E| v(K) |) = (zero(m,1)) .

[ax*> | white_noise_w_2]

ceq (E| w(K) * mtrans(w(J)) |) = (zero(n,n)) if (K =/= J) .

[ax*> | white_noise_v_2]

ceq (E| v(K) * mtrans(v(J)) |) = (zero(m,m)) if (K =/= J) .

[ax*> | zerro_cross_v_w]

eq (E| w(K) * mtrans(v(J)) |) = (zero(n,m)) .

---a priori and a posteriori estimates---

ops xhat xhatmin : MachineInt -> RandomMatrix .

ops Pminus P : MachineInt -> Matrix .

C–1



eq (r(xhat(K))) = (n) . eq (c(xhat(K))) = (1) .

eq (r(xhatmin(K))) = (n) . eq (c(xhatmin(K))) = (1) .

[ax*> | Pminus-0 ]

eq (Pminus(0)) = (E| (x(0) - xhatmin(0)) * mtrans(x(0) - xhatmin(0)) |) .

[ax*> | zerro-cross_v_x-xhatmin_1]

eq (E| (x(K) - xhatmin(K)) * mtrans(v(K)) |) = (zero(n, m)) .

[ax*> | zerro-cross_v_x-xhatmin_2]

eq (E| v(K) * mtrans(x(K) - xhatmin(K)) |) = (zero(m, n)) .

[ax*> | zerro-cross_w_x-xhatmin_1]

eq (E| ( x(K) - xhat(K) ) * mtrans(w(K)) |) = (zero(n,n)) .

[ax*> | zerro-cross_w_x-xhatmin_2]

eq (E| w(K) * mtrans( x(K) - xhat(K) ) |) = (zero(n,n)) .

---measurement innovation---

op zminus : MachineInt -> RandomMatrix .

eq (r(zminus(K))) = (m) . eq (c(zminus(K))) = (1) .

---gain---

op gain : MachineInt -> Matrix .

eq (r(gain(K))) = (n) . eq (c(gain(K))) = (m) .

--- best estimate---

op y : -> MatrixVar .

eq (r(y)) = (n) . eq (c(y)) = (m) .

ops BestPriorEstimate BestEstimate : MachineInt -> RandomMatrixExp .

op Estimate : MachineInt MatrixExp -> RandomMatrixExp .

var G : MatrixExp .

eq (r(Estimate(K, G))) = (n) . eq (c(Estimate(K, G))) = (1) .

[ax*> | Estimate]

eq (Estimate(K, G)) = (BestPriorEstimate(K) + (G * (z(K) - zminus(K)))) .

[ax*> | BestPriorEstimate-0]

eq (BestPriorEstimate(0)) = (xhatmin(0)) .

[ax*> | BestEstimate]

ceq (Estimate(K, G)) = (BestEstimate(K))

if (G minimizes /\ y . (E| (x(K) - Estimate(K, y)) * mtrans(x(K) - Estimate(K, y)) |)) .

[ax*> | BestPriorEstimate]

eq (BestPriorEstimate(K + 1)) = (Phi(K) * BestEstimate(K)) .

---additional hypothesis---

mb (minv (((H(K) * E| (x(K) - xhatmin(K)) * mtrans(x(K) - xhatmin(K)) |) *

mtrans(H(K))) + E| v(K) * mtrans(v(K)) |)) : MatrixExp .

---------------------------------------------------------------------- */

input xhatmin(0), Pminus(0)

/* ----------------------------------------------------------------------
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[proof assertion-1-1, first iteration]

(set BestPriorEstimate-0 in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[proof assertion-1-2, first iteration]

(set Pminus-0 in (1) .)

(rwr (1) .)

(idt (1) .)

--------------------------------------------------------------------- */

for(k,0,n)

{

/* ----------------------------------------------------------------------

[lem*> | assertion-1-1]

eq (BestPriorEstimate(k)) = (xhatmin(k)) .

[lem*> | assertion-1-2]

eq (Pminus(k)) = (E| (x(k) - xhatmin(k)) * mtrans(x(k) - xhatmin(k)) |) .

---------------------------------------------------------------------- */

// [lem*> | instruction-1-1]

zminus(k) := H(k) * xhatmin(k) ;

// [lem*> | instruction-2]

gain(k) := (Pminus(k) * mtrans(H(k))) * minv(((H(k) * Pminus(k)) * mtrans(H(k))) + R(k)) ;

/* ----------------------------------------------------------------------

[proof assertion-2]

(set (instruction-1-1 instruction-2 assertion-1-1 assertion-1-2) in (1) .)

(set (Estimate KF-measurement zerro-cross_v_x-xhatmin_1 zerro-cross_v_x-xhatmin_2

RK) in (1) .)

(set (id*left id*right id-trans distr*mtrans minus-def1 misc-is) in (1) .)

(set (E- E+ E*left E*right mtrans-E) in (1) .)

(set (fun-scalar-mult fun-mult fun-trans fun-def1 fun-def2) in (1) .)

(set (trace+ trace- tracem-def1 tracem-def2 trace-lemma1 trace-lemma1* trace-lemma2

minimizes) in (1) .)

(set (lemma-1 lemma-2 lemma-3 lemma-4 lemma-5 lemma-6 lemma-7 lemma-8 lemma-9 lemma-10

lemma-11) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[lem*> | assertion-2]

eq (gain(k)

minimizes

(/\ y . (E| (x(k) - Estimate(k, y)) *

mtrans(x(k) - Estimate(k, y)) |)))

= (true) .

---------------------------------------------------------------------- */
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// [lem*> | instruction-3]

xhat(k) := Estimate(k, gain(k)) ;

/* ----------------------------------------------------------------------

[proof assertion-3]

(set (instruction-3 assertion-2 ) in (1) .)

(apply BestEstimate to (1) at (none) with (G <- (gain(k))) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[lem*> | assertion-3]

eq (xhat(k)) = (BestEstimate(k)) .

---------------------------------------------------------------------- */

// [lem*> | instruction-3]

P(k) := (id(n) - (gain(k) * H(k))) * Pminus(k);

/* ----------------------------------------------------------------------

[proof assertion-4]

(set (instruction-1-1 instruction-2 instruction-3 instruction-4 assertion-1-1

assertion-1-2) in (1) .)

(set (Estimate KF-measurement RK zerro-cross_v_x-xhatmin_1 zerro-cross_v_x-xhatmin_2)

in (1) .)

(set (distr*mtrans mtrans-inv distr+mtrans id*left id*right id-trans) in (1) .)

(set (E- E+ E*left E*right mtrans-E) in (1) .)

(set (lemma-1 lemma-2 lemma-3 lemma-4 lemma-5 lemma-6 lemma-7 lemma-10 lemma-12

lemma-13 lemma-14 lemma-15) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[lem*> | assertion-4]

eq (P(k)) = (E| (x(k) - xhat(k)) * mtrans(x(k) - xhat(k)) |) .

---------------------------------------------------------------------- */

// [lem*> | instruction-5]

xhatmin(k + 1) := Phi(k) * xhat(k);

// [lem*> | instruction-6]

Pminus(k + 1) := ((Phi(k) * P(k)) * mtrans(Phi(k))) + Q(k);

/* ----------------------------------------------------------------------

[proof assertion-1-1]

(set (instruction-5 assertion-3 BestPriorEstimate) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[proof assertion-1-2]
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(set (instruction-5 instruction-6 assertion-4) in (1) .)

(set (KF-next QK zerro-cross_w_x-xhatmin_1 zerro-cross_w_x-xhatmin_2) in (1) .)

(set (E+ E*left E*right) in (1) .)

(set (lemma-2 lemma-16) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

}
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Appendix D

/* ---------------------------------------------------------------------

--- Information Filter Specification-----

--- -------------------------------------------------

---51 axioms---

--- initial equations---

ops x z v w : MachineInt -> RandomMatrix .

ops n m k : -> MachineInt .

ops Phi H : MachineInt -> Matrix .

var K : MachineInt .

eq (r(x(K))) = (n) . eq (c(x(K))) = (1) .

eq (r(z(K))) = (m) . eq (c(z(K))) = (1) .

eq (r(v(K))) = (m) . eq (c(v(K))) = (1) .

eq (r(w(K))) = (n) . eq (c(w(K))) = (1) .

eq (r(Phi(K))) = (n) . eq (c(Phi(K))) = (n) .

eq (r(H(K))) = (m) . eq (c(H(K))) = (n) .

[ax*> | KF-next]

eq (x(K + 1)) = ((Phi(K) * x(K)) + w(K)) .

[ax*> | KF-measurement]

eq (z(K)) = ((H(K) * x(K)) + v(K)) .

---initial suppositions---

ops Q R : MachineInt -> Matrix .

[ax*> | RK]

eq (R(K)) = (E| v(K) * mtrans(v(K)) |) .

[ax*> | QK]

eq (Q(K)) = (E| w(K) * mtrans(w(K)) |) .

var J : MachineInt .

[ax*> | white_noise_w_1]

eq (E| w(K) |) = (zero(n,1)) .

[ax*> | white_noise_v_1]

eq (E| v(K) |) = (zero(m,1)) .

[ax*> | white_noise_w_2]

ceq (E| w(K) * mtrans(w(J)) |) = (zero(n,n)) if (K =/= J) .

[ax*> | white_noise_v_2]

ceq (E| v(K) * mtrans(v(J)) |) = (zero(m,m)) if (K =/= J) .

[ax*> | zerro_cross_v_w]

eq (E| w(K) * mtrans(v(J)) |) = (zero(n,m)) .

---a priori and a posteriori estimates---

ops xhat xhatmin : MachineInt -> RandomMatrix .

ops Pminus P : MachineInt -> Matrix .
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eq (r(xhat(K))) = (n) . eq (c(xhat(K))) = (1) .

eq (r(xhatmin(K))) = (n) . eq (c(xhatmin(K))) = (1) .

[ax*> | Pminus-0 ]

eq (Pminus(0)) = (E| (x(0) - xhatmin(0)) * mtrans(x(0) - xhatmin(0)) |) .

[ax*> | zerro-cross_v_x-xhatmin_1]

eq (E| (x(K) - xhatmin(K)) * mtrans(v(K)) |) = (zero(n, m)) .

[ax*> | zerro-cross_v_x-xhatmin_2]

eq (E| v(K) * mtrans(x(K) - xhatmin(K)) |) = (zero(m, n)) .

[ax*> | zerro-cross_w_x-xhatmin_1]

eq (E| ( x(K) - xhat(K) ) * mtrans(w(K)) |) = (zero(n,n)) .

[ax*> | zerro-cross_w_x-xhatmin_2]

eq (E| w(K) * mtrans( x(K) - xhat(K) ) |) = (zero(n,n)) .

---measurement innovation---

op zminus : MachineInt -> RandomMatrix .

eq (r(zminus(K))) = (m) . eq (c(zminus(K))) = (1) .

---gain---

op gain : MachineInt -> Matrix .

eq (r(gain(K))) = (n) . eq (c(gain(K))) = (m) .

--- best estimate---

op y : -> MatrixVar .

eq (r(y)) = (n) . eq (c(y)) = (m) .

ops BestPriorEstimate BestEstimate : MachineInt -> RandomMatrixExp .

op Estimate : MachineInt MatrixExp -> RandomMatrixExp .

var G : MatrixExp .

eq (r(Estimate(K, G))) = (n) . eq (c(Estimate(K, G))) = (1) .

[ax*> | Estimate]

eq (Estimate(K, G)) = (BestPriorEstimate(K) + (G * (z(K) - zminus(K)))) .

[ax*> | BestPriorEstimate-0]

eq (BestPriorEstimate(0)) = (xhatmin(0)) .

[ax*> | BestEstimate]

ceq (Estimate(K, G)) = (BestEstimate(K))

if (G minimizes /\ y . (E| (x(K) - Estimate(K, y)) * mtrans(x(K) - Estimate(K, y)) |)) .

[ax*> | BestPriorEstimate]

eq (BestPriorEstimate(K + 1)) = (Phi(K) * BestEstimate(K)) .

---additional hypothesis---

mb (minv (((H(K) * E|(x(K) - xhatmin(K)) * mtrans(x(K) - xhatmin(K))|) * mtrans(H(K)))

+ E| v(K) * mtrans(v(K))|)) : MatrixExp .

--- Specific to INFORMATION FILTER---

op InvP : MachineInt -> Matrix .

---this is the inverse of P, so P will be the inverse of InvP---
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mb (minv(InvP(K))) : MatrixExp .

mb (minv(Pminus(K))) : MatrixExp .

mb (minv(R(K))) : MatrixExp .

mb (minv(P(K))) : MatrixExp .

eq (r(Pminus(K))) = (n) . eq (c(Pminus(K))) = (n) .

eq (r(R(K))) = (m) . eq (c(R(K))) = (m) .

eq (r(P(K))) = (n) . eq (c(P(K))) = (n) .

eq (r(InvP(K))) = (n) . eq (c(InvP(K))) = (n) .

mb (minv(minv(Pminus(K)) + ((mtrans(H(K)) * minv(R(K))) * H(K)))) : MatrixExp .

mb (minv(((H(K) * Pminus(K)) * mtrans(H(K))) + R(K))) : MatrixExp .

---------------------------------------------------------------------- */

input xhatmin(0), Pminus(0)

/* ----------------------------------------------------------------------

[proof assertion-1-1, first iteration]

(set BestPriorEstimate-0 in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[proof assertion-1-2, first iteration]

(set Pminus-0 in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

for(k,0,n)

{

/* ----------------------------------------------------------------------

[lem*> | assertion-1-1]

eq (BestPriorEstimate(k)) = (xhatmin(k)) .

[lem*> | assertion-1-2]

eq (Pminus(k)) = (E| (x(k) - xhatmin(k)) * mtrans(x(k) - xhatmin(k)) |) .

---------------------------------------------------------------------- */

//[lem*> | instruction-0-1]

InvP(k) := minv(Pminus(k)) + ((mtrans(H(k)) * minv(R(k))) * H(k));

//[lem*> | instruction-0-2]

P(k) := minv(InvP(k));

// [lem*> | instruction-0-3]

gain(k) := P(k) * (mtrans(H(k)) * minv(R(k))) ;

D–3



/* ----------------------------------------------------------------------

[proof assertion-1-3]

(apply-r lemma-18 to (1) at (none) with ((RP <- (P(k)) ); (RQ <- (R(k)))) .)

(set (instruction-0-1 instruction-0-2 instruction-0-3) in (1) .)

(set idemp-inv in (1) .)

(set (lemma-19 lemma-20 lemma-21 lemma-34) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[lem*> | assertion-1-3]

eq (gain(k)) = ((Pminus(k) * mtrans(H(k))) * minv(((H(k) * Pminus(k)) * mtrans(H(k))) + R(k))) .

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[proof assertion-1-4]

(lem ((((id(n) - (gain(k) * H(k))) * Pminus(k)) * InvP(k)) is (id(n))) = (true)

to (1) lbl inv-cond1 .)

(set (instruction-0-1 assertion-1-3) in (1 . 0 . 1 ) .)

(set (id*left id*right minv-def2 minus-def2 misc-is) in (1 . 0 . 1) .)

(set (lemma-22 lemma-23 lemma-24 lemma-25 lemma-26) in (1 . 0 . 1) .)

(rwr (1 . 0 . 1 ) .)

(idt (1 . 0 . 1) .)

(lem ((InvP(k) * ((id(n) - (gain(k) * H(k))) * Pminus(k))) is (id(n))) = (true) to (1)

lbl inv-cond2 .)

(set (instruction-0-1 assertion-1-3) in (1 . 0 . 2 ) .)

(set (id*left id*right minv-def1 misc-is) in (1 . 0 . 2) .)

(set (lemma-27 lemma-28 lemma-29 lemma-30 lemma-31 lemma-32 lemma-33) in (1 . 0 . 2 ) .)

(rwr (1 . 0 . 2 ) .)

(idt (1 . 0 . 2) .)

(set instruction-0-2 in (1) .)

(rwr (1) .)

(set (inv-cond1 inv-cond2) in (1) .)

(apply minv-of-matrix to (1) at (none) with ((RP <- (InvP(k)));

(RQ <- ((id(n) - (gain(k) * H(k))) * Pminus(k)))) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[lem*> | assertion-1-4]

eq (P(k)) = ((id(n) - (gain(k) * H(k))) * Pminus(k)) .

---------------------------------------------------------------------- */

// [lem*> | instruction-1-1]

zminus(k) := H(k) * xhatmin(k) ;

/* ----------------------------------------------------------------------

[proof assertion-2]

(set (instruction-1-1 assertion-1-1 assertion-1-2 assertion-1-3) in (1) .)

(set (Estimate KF-measurement zerro-cross_v_x-xhatmin_1 zerro-cross_v_x-xhatmin_2
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RK) in (1) .)

(set (id*left id*right id-trans distr*mtrans minus-def1 misc-is) in (1) .)

(set (E- E+ E*left E*right mtrans-E) in (1) .)

(set (fun-scalar-mult fun-mult fun-trans fun-def1 fun-def2) in (1) .)

(set (trace+ trace- tracem-def1 tracem-def2 trace-lemma1 trace-lemma1* trace-lemma2

minimizes) in (1) .)

(set (lemma-1 lemma-2 lemma-3 lemma-4 lemma-5 lemma-6 lemma-7 lemma-8 lemma-9 lemma-10

lemma-11) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[lem*> | assertion-2]

eq (gain(k)

minimizes

(/\ y . (E| (x(k) - Estimate(k, y)) *

mtrans(x(k) - Estimate(k, y)) |)))

= (true) .

---------------------------------------------------------------------- */

// [lem*> | instruction-3]

xhat(k) := Estimate(k, gain(k)) ;

/* ----------------------------------------------------------------------

[proof assertion-3]

(set (instruction-3 assertion-2) in (1) .)

(apply BestEstimate to (1) at (none) with (G <- (gain(k))) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[lem*> | assertion-3]

eq (xhat(k)) = (BestEstimate(k)) .

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[proof assertion-4]

(set (instruction-1-1 instruction-3 assertion-1-1 assertion-1-2 assertion-1-3

assertion-1-4) in (1) .)

(set (Estimate KF-measurement RK zerro-cross_v_x-xhatmin_1 zerro-cross_v_x-xhatmin_2) in (1) .)

(set (distr*mtrans mtrans-inv distr+mtrans id*left id*right id-trans) in (1) .)

(set (E- E+ E*left E*right mtrans-E) in (1) .)

(set (lemma-1 lemma-2 lemma-3 lemma-4 lemma-5 lemma-6 lemma-7 lemma-10 lemma-12

lemma-13 lemma-14 lemma-15) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[lem*> | assertion-4]

eq (P(k)) = (E| (x(k) - xhat(k)) * mtrans(x(k) - xhat(k)) |) .

---------------------------------------------------------------------- */
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// [lem*> | instruction-5]

xhatmin(k + 1) := Phi(k) * xhat(k);

// [lem*> | instruction-6]

Pminus(k + 1) := ((Phi(k) * P(k)) * mtrans(Phi(k))) + Q(k) ;

/* ----------------------------------------------------------------------

[proof assertion-1-1]

(set (instruction-5 assertion-3 BestPriorEstimate) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[proof assertion-1-2]

(set (instruction-5 instruction-6 assertion-4) in (1) .)

(set (KF-next QK zerro-cross_w_x-xhatmin_1 zerro-cross_w_x-xhatmin_2) in (1) .)

(set (E+ E*left E*right) in (1) .)

(set (lemma-2 lemma-16) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

}
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Appendix E

/* ---------------------------------------------------------------------

--- Extended Kalman Filter Specification-----

--- ----------------------------------------------

--- 57 axioms---

---initial equations---

ops x z v w : MachineInt -> RandomMatrix .

op u : MachineInt -> Matrix .

op f : RandomMatrix RandomMatrix -> RandomMatrixExp? .

op h : RandomMatrix -> RandomMatrixExp? .

ops n m p k : -> MachineInt .

var K : MachineInt .

vars V1 V2 : RandomMatrix .

eq (r(x(K))) = (n) . eq (c(x(K))) = (1) .

eq (r(z(K))) = (m) . eq (c(z(K))) = (1) .

eq (r(v(K))) = (m) . eq (c(v(K))) = (1) .

eq (r(w(K))) = (n) . eq (c(w(K))) = (1) .

eq (r(u(K))) = (p) . eq (c(u(K))) = (1) .

cmb (f(V1, V2)) : RandomMatrix if (r(V1) == n and r(V2) == p and c(V1) == 1

and c(V2) == 1) .

cmb (h(V1)) : RandomMatrix if (r(V1) == n and c(V1) == 1) .

ceq (r(f(V1, V2))) = (n) if (f(V1, V2) : RandomMatrix) .

ceq (c(f(V1, V2))) = (1) if (f(V1, V2) : RandomMatrix) .

ceq (r(h(V1))) = (m) if (h(V1) : RandomMatrix) .

ceq (c(h(V1))) = (1) if (h(V1) : RandomMatrix) .

[ax*> | EKF-next]

eq (x(K + 1)) = (f(x(K), u(K)) + w(K)) .

[ax*> | EKF-measurement]

eq (z(K)) = (h(x(K)) + v(K)) .

---initial suppositions---

ops Q R : MachineInt -> Matrix .

[ax*> | RK]

eq (R(K)) = (E| v(K) * mtrans(v(K)) |) .

[ax*> | QK]

eq (Q(K)) = (E| w(K) * mtrans(w(K)) |) .

var J : MachineInt .

[ax*> | white_noise_w_1]

eq (E| w(K) |) = (zero(n,1)) .

[ax*> | white_noise_v_1]
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eq (E| v(K) |) = (zero(m,1)) .

[ax*> | white_noise_w_2]

ceq (E| w(K) * mtrans(w(J)) |) = (zero(n,n)) if (K =/= J) .

[ax*> | white_noise_v_2]

ceq (E| v(K) * mtrans(v(J)) |) = (zero(m,m)) if (K =/= J) .

[ax*> | zerro_cross_v_w]

eq (E| w(K) * mtrans(v(J)) |) = (zero(n,m)) .

---a priori and a posteriori estimates---

ops xhat xhatmin : MachineInt -> RandomMatrix .

ops Pminus P : MachineInt -> Matrix .

eq (r(xhat(K))) = (n) . eq (c(xhat(K))) = (1) .

eq (r(xhatmin(K))) = (n) . eq (c(xhatmin(K))) = (1) .

[ax*> | Pminus-0 ]

eq (Pminus(0)) = (E| (x(0) - xhatmin(0)) * mtrans(x(0) - xhatmin(0)) |) .

[ax*> | zerro-cross_v_x-xhatmin_1]

eq (E| (x(K) - xhatmin(K)) * mtrans(v(K)) |) = (zero(n, m)) .

[ax*> | zerro-cross_v_x-xhatmin_2]

eq (E| v(K) * mtrans(x(K) - xhatmin(K)) |) = (zero(m, n)) .

[ax*> | zerro-cross_w_x-xhatmin_1]

eq (E| ( x(K) - xhat(K) ) * mtrans(w(K)) |) = (zero(n,n)) .

[ax*> | zerro-cross_w_x-xhatmin_2]

eq (E| w(K) * mtrans( x(K) - xhat(K) ) |) = (zero(n,n)) .

---measurement innovation---

op zminus : MachineInt -> RandomMatrix .

eq (r(zminus(K))) = (m) . eq (c(zminus(K))) = (1) .

---gain---

op gain : MachineInt -> Matrix .

eq (r(gain(K))) = (n) . eq (c(gain(K))) = (m) .

---Phi+H+Jacobians---

ops Phi H : MachineInt -> Matrix .

op Jacob-f : RandomMatrix RandomMatrix -> MatrixExp .

op Jacob-h : RandomMatrix -> MatrixExp .

var V10 : RandomMatrix .

cmb (Jacob-f(V1, V2)) : Matrix if (f(V1, V2) : RandomMatrix) .

cmb (Jacob-h(V1)) : Matrix if (h(V1) : RandomMatrix ) .

ceq (r(Jacob-f(V1, V2))) =(r(f(V1, V2))) if (Jacob-f(V1, V2) : Matrix) .

ceq (c(Jacob-f(V1, V2))) =(r(V1)) if (Jacob-f(V1, V2) : Matrix) .

ceq (r(Jacob-h(V1))) = (r(h(V1))) if (Jacob-h(V1) : Matrix) .

ceq (c(Jacob-h(V1))) = (r(V1)) if (Jacob-h(V1) : RandomMatrix) .

[ ax*> | Jacob-f]

eq (f(V1, V2) ) = (f(V10, V2) + (Jacob-f(V10, V2) * (V1 - V10)) ).

[ ax*> | Jacob-h]

eq (h(V1)) = (h(V10) + (Jacob-h(V10) * (V1 - V10))) .
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---best estimate---

op y : -> MatrixVar .

eq (r(y)) = (n) . eq (c(y)) = (m) .

ops BestPriorEstimate BestEstimate : MachineInt -> RandomMatrixExp .

op Estimate : MachineInt MatrixExp -> RandomMatrixExp .

var G : MatrixExp .

eq (r(Estimate(K, G))) = (n) . eq (c(Estimate(K, G))) = (1) .

[ax*> | Estimate]

eq (Estimate(K, G)) = (BestPriorEstimate(K) + (G * (z(K) - zminus(K)))) .

[ax*> | BestPriorEstimate-0]

eq (BestPriorEstimate(0)) = (xhatmin(0)) .

[ax*> | BestEstimate]

ceq (Estimate(K, G)) = (BestEstimate(K))

if (G minimizes /\ y . (E| (x(K) - Estimate(K, y)) * mtrans(x(K) - Estimate(K, y)) |)) .

[ax*> | BestPriorEstimate]

eq (BestPriorEstimate(K + 1)) = (f(BestEstimate(K), u(K))) .

---additional hypotheses---

mb (minv(((Jacob-h(xhatmin(K)) * E| (x(K) - xhatmin(K)) * mtrans (x(K) - xhatmin(K) ) |) *

mtrans(Jacob-h(xhatmin(K)))) + E| v(K) * mtrans(v(K)) |)) : MatrixExp .

[ax*> | Jacob-h-x]

eq (h(x(K))) = (h(xhatmin(K)) + (Jacob-h(xhatmin(K)) * (x(K) - xhatmin(K)))) .

[ax*> | Jacob-f-x]

eq (f(x(K), u(K)) ) = (f(xhat(K), u(K)) + (Jacob-f(xhat(K), u(K)) * (x(K) - xhat(K))) ).

---------------------------------------------------------------------- */

input xhatmin(0), Pminus(0)

/* ----------------------------------------------------------------------

[proof assertion-1-1, first iteration]

(set BestPriorEstimate-0 in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[proof assertion-1-2, first iteration]

(set Pminus-0 in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

for(k,0,n)

{

/* ----------------------------------------------------------------------

[lem*> | assertion-1-1]

eq (BestPriorEstimate(k)) = (xhatmin(k)) .
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[lem*> | assertion-1-2]

eq (Pminus(k)) = (E| (x(k) - xhatmin(k)) * mtrans(x(k) - xhatmin(k)) |) .

---------------------------------------------------------------------- */

// [lem*> | instruction-1-1]

zminus(k) := h(xhatmin(k)) ;

// [lem*> | instruction-1-2]

H(k) := Jacob-h(xhatmin(k));

/* ----------------------------------------------------------------------

[proof assertion-1-3]

(set (instruction-1-1 EKF-measurement Jacob-h-x) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[lem*> | assertion-1-3]

eq (z(k)) = ((zminus(k) + (Jacob-h(xhatmin(k)) * (x(k) - xhatmin(k )))) + v(k)) .

---------------------------------------------------------------------- */

// [lem*> | instruction-2]

gain(k) := (Pminus(k) * mtrans(H(k))) * minv(((H(k) * Pminus(k)) * mtrans(H(k))) + R(k)) ;

/* ----------------------------------------------------------------------

[proof assertion-2]

(set (instruction-1-1 instruction-1-2 instruction-2 assertion-1-1 assertion-1-2) in (1) .)

(set (Estimate EKF-measurement zerro-cross_v_x-xhatmin_1 zerro-cross_v_x-xhatmin_2 RK

Jacob-h-x) in (1) .)

(set (id*left id*right id-trans distr*mtrans minus-def1 misc-is) in (1) .)

(set (E- E+ E*left E*right mtrans-E) in (1) .)

(set (fun-scalar-mult fun-mult fun-trans fun-def1 fun-def2) in (1) .)

(set (trace+ trace- tracem-def1 tracem-def2 trace-lemma1 trace-lemma1* trace-lemma2

minimizes) in (1) .)

(set (lemma-1 lemma-2 lemma-3 lemma-4 lemma-5 lemma-6 lemma-7 lemma-8 lemma-9 lemma-10

lemma-11 lemma-17) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[lem*> | assertion-2]

eq (gain(k)

minimizes

(/\ y . (E| (x(k) - Estimate(k, y)) *

mtrans(x(k) - Estimate(k, y)) |)))

= (true) .

---------------------------------------------------------------------- */

// [lem*> | instruction-3]

xhat(k) := Estimate(k, gain(k)) ;
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/* ----------------------------------------------------------------------

[proof assertion-3]

(set (instruction-3 assertion-2 ) in (1) .)

(apply BestEstimate to (1) at (none) with (G <- (gain(k))) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[lem*> | assertion-3]

eq (xhat(k)) = (BestEstimate (k)) .

---------------------------------------------------------------------- */

// [lem*> | instruction-4]

P(k) := (id(n) - (gain(k) * H(k))) * Pminus(k);

/* ----------------------------------------------------------------------

[proof assertion-4]

(set (instruction-1-1 instruction-1-2 instruction-2 instruction-3 instruction-4

assertion-1-1 assertion-1-2) in (1) .)

(set (Estimate EKF-measurement RK zerro-cross_v_x-xhatmin_1 zerro-cross_v_x-xhatmin_2

Jacob-h-x) in (1) .)

(set (distr*mtrans mtrans-inv distr+mtrans id*left id*right id-trans) in (1) .)

(set (E- E+ E*left E*right mtrans-E) in (1) .)

(set (lemma-1 lemma-2 lemma-3 lemma-4 lemma-5 lemma-6 lemma-7 lemma-10 lemma-12

lemma-13 lemma-14 lemma-15 lemma-17) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[lem*> | assertion-4]

eq (P(k)) = (E| (x(k) - xhat(k)) * mtrans(x(k) - xhat(k)) |) .

---------------------------------------------------------------------- */

// [lem*> | instruction-5]

xhatmin(k + 1) := f(xhat(k), u(k));

// [lem*> | instruction-6-0]

Phi(k) := Jacob-f(xhat(k), u(k)) ;

/* ----------------------------------------------------------------------

[proof assertion-5]

(set (instruction-5 instruction-6-0 EKF-next Jacob-f-x) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[lem*> | assertion-5]

eq (x(k + 1)) = ((xhatmin(k + 1) + (Jacob-f(xhat(k), u(k)) * (x(k) - xhat(k)))) + w(k)) .

---------------------------------------------------------------------- */
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// [lem*> | instruction-6]

Pminus(k + 1) := ((Phi(k) * P(k)) * mtrans(Phi(k))) + Q(k) ;

/* ----------------------------------------------------------------------

[proof assertion-1-1]

(set (instruction-5 assertion-3 BestPriorEstimate) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

/* ----------------------------------------------------------------------

[proof assertion-1-2]

(set (instruction-5 instruction-6-0 instruction-6 assertion-4 assertion-5) in (1) .)

(set (EKF-next QK zerro-cross_w_x-xhatmin_1 zerro-cross_w_x-xhatmin_2 Jacob-f-x) in (1) .)

(set (E+ E*left E*right) in (1) .)

(set (lemma-2 lemma-16 lemma-17) in (1) .)

(rwr (1) .)

(idt (1) .)

---------------------------------------------------------------------- */

}
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