
The Effect of Atom Replacement Strategies on Dictionary Learning

Paul Irofti1.
1 University Politehnica of Bucharest, Romania.

Abstract— The sparse representations field presents a wide set
of algorithms for learning overcomplete dictionaries. During the
learning process many of the dictionary columns remain unused
by the resulting representations. In this paper we present a few
replacement strategies and their direct impact on a set of popular
algorithms such as K-SVD. Experiments show significant reduc-
tions in the representation error and also evidentiate clear differ-
ences between the strategies.

1 Introduction
The signal processing domain presents an increased interest for
sparse representations through overcomplete dictionary learn-
ing (DL)[1, 2], which showed significant improvements com-
pared to fixed dictionaries built from various transform basis.

Starting with the matrix Y ∈ Rp×m, built from m training
signals of dimension p, and a sparsity target s we aim to solve
the optimization problem

minimize
D,X

‖Y −DX‖2F

subject to ‖dj‖2 = 1, 1 ≤ j ≤ n

‖xi‖0 ≤ s, 1 ≤ i ≤ m,

(1)

where the variables are the dictionary D ∈ Rp×n, whose n
columns dj are called atoms, and the sparse representations
X ∈ Rn×m. The columns xi of X are at most s-sparse as de-
noted by ‖·‖0 which is the l0 pseudo-norm. The atoms are nor-
malized so that the multiplicative indetermination of the DX
factorization is removed.

Equation (1) is non-convex and bilinear which is why DL
methods approach it in two stages First, the dictionary D is
fixed and the representations are computed. This is a hard
combinatorial problem that can be solved through greedy al-
gorithms. The popular choice is orthogonal matching pursuit
(OMP)[3]. Next, the resulting representations are kept fixed
and the dictionary is updated to reduce the approximation er-
ror.

Investigating the sparsity pattern provided by OMP we can
see how many times each dictionary atom is used for represen-
tation. While popular atoms help with classification and com-
pression, what about the ones that are rarely or never used?

In this paper we focus on different strategies for replacing
unused atoms with new ones leading to an overall improvement
of the DL process. In Section 2 we briefly present existing dic-
tionary update methods followed by Section 3, where we de-
scribe and present numerical results with different replacement
strategies, and afterwards we conclude in Section 4.

2 DL algorithms
K-SVD[4] updates the atoms in sequence following the Gauss-
Seidel approach: the current atom is refined using informa-

tion from the atoms that were previously updated in the current
stage. K-SVD solves the optimization problem

min
dj ,Xj,Ij

∥∥∥∥∥∥
Y −

∑
` 6=j

d`X`,I`

− djXj,Ij

∥∥∥∥∥∥
2

F

, (2)

where Ij is the sparse signals subset that use atom j in their
representation, Xj,Ij denotes row j from the sparse represen-
tations restricted to the columns in Ij , and all atoms except-
ing dj are fixed. Problem (2) is a rank-1 approximation whose
solution is given by the singular vectors corresponding to the
largest singular value. Note that the solution updates both the
atom and the associated representations.

Approximate K-SVD (AK-SVD)[5] is a faster version that
computes the singular vectors through a single iteration of the
power method

In order to guarantee certain properties, such as clustering,
sequential generalization of K-means (SGK) [6] preserves the
sparse structure and proposes a similar optimization problem
that refines only the atom dj . This can be reduced to a simple
least-squares problem.

NSGK [7] follows the same strategy, but accounts for differ-
ences between the previous and current values of the dictionary
and representations. Empirical evidence indicates that NSGK
provides better results than the former methods.

3 Replacement Strategies
The sequential nature of the dictionary update allows us to re-
place unused atoms during refinement as soon as we encounter
them.

Let us assume that the default action is to leave the atom as
it is. Numerical evidence shows that once an atom stops being
used it never gets picked up again, so we could just remove it
and shrink the dictionary. While this does not affect the ap-
proximation it does improve performance and storage.

Given that common practice dictates that we start with a ran-
dom dictionary, a natural idea is to substitute with a new ran-
domly generated column. Another option is to find the worst
represented signal and make it a part of the dictionary (marked
’Worst’ in our tables and figures). In our experiments we also
performed this replacement in bulk at the end of the dictionary
refinement stage. We label this ’Post’.

We built the signal set Y from random 8 × 8 image patches
taken from the USC-SIPI [8] database. The results presented
here are the average of executing 10 runs of each method with
the same parametrization. Every algorithm performed 50 DL
iterations before stopping.

We compare the approximation of the original signals by the
dictionary and sparse representations through the root mean
square error RMSE = ‖Y−DX‖F√

pm .
In Table 1 we show the DL results on a set of m = 2048

signals of size p = 64 each, with a sparsity constraint s = 8,



Table 1: Final RMSE with various replacement strategies

n Method Replacement
None Random Worst Post

128

K-SVD 0.029406 0.026723 0.019096 0.019355
AK-SVD 0.029497 0.026876 0.019134 0.019369

SGK 0.029402 0.026800 0.019079 0.019612
NSGK 0.025004 0.024707 0.020558 0.019804

192

K-SVD 0.030805 0.027013 0.018812 0.018803
AK-SVD 0.031010 0.026661 0.018804 0.018835

SGK 0.031328 0.026938 0.018799 0.018885
NSGK 0.023911 0.025168 0.021471 0.019271

256

K-SVD 0.029146 0.023979 0.016773 0.016730
AK-SVD 0.029291 0.024300 0.016843 0.016858

SGK 0.029836 0.024201 0.016928 0.016923
NSGK 0.022099 0.022590 0.020913 0.017563

384

K-SVD 0.024984 0.018467 0.012522 0.011930
AK-SVD 0.024721 0.018697 0.012665 0.011972

SGK 0.024693 0.019048 0.012791 0.011946
NSGK 0.016995 0.016820 0.018473 0.012650

512

K-SVD 0.025699 0.017744 0.012343 0.011034
AK-SVD 0.025318 0.018016 0.012436 0.011078

SGK 0.025617 0.017668 0.012579 0.011072
NSGK 0.016795 0.016769 0.017951 0.012128

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

5 10 15 20 25 30 35 40 45 50

R
M

SE

Iterations

None
Random

Worst
Post

Figure 1: Error descent averaged over 10 runs for K-SVD (n = 512).

while varying the dictionary size. We can see that, except for a
few NSGK results, replacing the unused atoms provides much
better approximations. While using random atoms for substi-
tution improves the situation, choosing the worst represented
data item instead is clearly the best choice. The difference
comes with dictionary size: smaller dictionaries prefer substi-
tution during refinement (n = 128 and part of n = 256), while
larger ones show smaller errors by replacing all unused atoms
post-refinement.

Figure 1 shows the average error evolution of K-SVD
with different atom replacement strategies. Employing post-
refinement substitution is the clear winner at every iteration,
followed by performing signal substitution during dictionary
update. Random replacement comes in last, but is clearly ahead
of the plain K-SVD version.

In Figure 2 we present the average error curve for AK-SVD
dictionaries of size n = 256. This case is particularly inter-
esting because post-refinement substitution starts ahead but is
caught up and beaten by substitution during dictionary update.
Even though both are well behind, we can see that random re-

0.015

0.02

0.025

0.03

0.035

0.04

0.045

5 10 15 20 25 30 35 40 45 50

R
M

SE

Iterations

None
Random

Worst
Post

Figure 2: Error descent averaged over 10 runs for AK-SVD (n = 256).

placement is better than no replacement.

4 Conclusion
We presented the impact of different atom replacement tech-
niques on the DL process. Numerical results have shown, with
small exceptions, that substitution has a significant impact on
the approximation error. Our experiments suggest that replac-
ing unused atoms with the worst represented signals from the
training set is the best approach.

Acknowledgements
This work was supported by the Romanian National Authority
for Scientific Research, CNCS - UEFISCDI, project number
PN-II-RU-TE-2014-4-2713.

References
[1] R. Rubinstein, A.M. Bruckstein, and M. Elad, “Dictionaries for

Sparse Representations Modeling,” Proc. IEEE, vol. 98, no. 6, pp.
1045–1057, June 2010.

[2] I. Tosic and P. Frossard, “Dictionary Learning,” IEEE Signal
Proc. Mag., vol. 28, no. 2, pp. 27–38, Mar. 2011.

[3] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad, “Orthogonal
matching pursuit: Recursive function approximation with applica-
tions to wavelet decomposition,” in 27th Asilomar Conf. Signals
Systems Computers, Nov. 1993, vol. 1, pp. 40–44.

[4] M. Aharon, M. Elad, and A.M. Bruckstein, “K-SVD: An Algo-
rithm for Designing Overcomplete Dictionaries for Sparse Repre-
sentation,” Signal Processing, IEEE Transactions on, vol. 54, no.
11, pp. 4311–4322, 2006.

[5] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient Implemen-
tation of the K-SVD Algorithm using Batch Orthogonal Matching
Pursuit,” Technical Report - CS Technion, 2008.

[6] S.K. Sahoo and A. Makur, “Dictionary training for sparse rep-
resentation as generalization of k-means clustering,” Signal Pro-
cessing Letters, IEEE, vol. 20, no. 6, pp. 587–590, 2013.

[7] M. Sadeghi, M. Babaie-Zadeh, and C. Jutten, “Dictionary Learn-
ing for Sparse Representation: a Novel Approach,” IEEE Signal
Proc. Letter, vol. 20, no. 12, pp. 1195–1198, Dec. 2013.

[8] A.G. Weber, “The USC-SIPI Image Database,” 1997.


