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ABSTRACT
Pairwise, or separable, dictionaries are suited for the sparse
representation of 2D signals in their original form, without
vectorization. They are equivalent with enforcing a Kro-
necker structure on a standard dictionary for 1D signals. We
present a dictionary learning algorithm, in the coordinate
descent style of Approximate K-SVD, for such dictionaries.
The algorithm has the benefit of extremely low complexity,
clearly lower than that of existing algorithms. Experimen-
tal evidence shows that the performance of the proposed
algorithm is comparable to that of standard (unstructured)
AK-SVD with the same number of atoms.

Index Terms— sparse representations, dictionary learn-
ing, separable dictionary, coordinate descent

1. INTRODUCTION

Sparse representations [1, 2] have numerous signal processing
applications. They are especially effective when combined
with dictionary learning (DL) [3]. A significant variation on
this theme is that of structured dictionaries, where the repre-
sentation matrix is endowed with a structure that, ideally, is
both suited to the characteristics of the modeled signals and
easier to compute than in the standard case.

We deal with separable (or pairwise) dictionaries, targeted
to the representation of 2D signals. Given training signals
Yk ∈ Rm×m, k = 1 : N , and target sparsity s ∈ N, the
pairwise DL problem is

min
D1,D2,X

N∑
k=1

‖Yk −D1XkD
T
2 ‖2F

subject to ‖Xk‖0 ≤ s, k = 1 : N

‖d1i‖2 = 1, i = 1 : n1

‖d2j‖2 = 1, j = 1 : n2,

(1)

where Xk ∈ Rn1×n2 are the sparse representations (the ma-
trix Xk has at most s nonzero elements), D1 ∈ Rm×n1 is the
left dictionary and D2 ∈ Rm×n2 is the right dictionary. By
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d1i and d2j we denote the columns of the two dictionaries,
also named atoms, which are normalized.

Let vecM denote the column-order vectorization of ma-
trix M . We note that

‖Yk−D1XkD
T
2 ‖F = ‖vecYk−(D2⊗D1)vecXk‖2, (2)

hence problem (1) is in fact the standard (1D) DL problem
with dictionary D2⊗D1. The great advantage of the 2D for-
mulation (1) is that it operates with two small matrices, while
the large dictionary D2 ⊗D1 is never explicitly computed.
Another advantage is the ability to work directly with the 2D
signals, thus being more able to model the spatial structures.

Our contribution is a simple algorithm for (1) based on
coordinate descent, in the style of Approximate K-SVD (AK-
SVD) [4]. Its complexity is lower than that of the existing
techniques listed in section 2.1. After reviewing sparse repre-
sentation with 2D-OMP in section 2.2, the remainder of sec-
tion 2 is dedicated to the presentation of our algorithm. Sec-
tion 3 shows a behavior very close to that of the standard 1D
AK-SVD, with much smaller resources in terms of dictionary
size and computational complexity.

2. PAIRWISE DICTIONARY LEARNING

2.1. Existing Techniques

The usual approach is to alternate sparse coding and dictio-
nary update steps. In the former, the representation matrices
Xk are computed for fixed dictionaries; in the latter, the dic-
tionaries D1 and D2 and possibly the nonzero elements of
Xk are updated with a fixed structure of zeros in Xk.

Separable DL was introduced in [5], together with a
highly complex algorithm based on manifold gradient search.
In [6], the problem is tackled via alternating optimization;
while we update atoms individually, there pairs of atoms are
optimized together, which leads to a more complicated rank-
1 CANDECOMP/PARAFAC (CP) decomposition. Tensor
techniques are also used in DL context in [7] and [8], the
latter proposing the TKSVD algorithm that will be analyzed
below. Other Kronecker-like dictionary structures can be
found in [6, 9].



2.2. Representation

Given patch Y , left dictionary D1 and right dictionary D2,
the error function is

E(X) = Y −D1XDT
2 , (3)

where X is the s-sparse representation. Finding the best X
given the sparsity level s requires solving the optimization
problem

X = argmin
X

‖E(X)‖F subject to ‖X‖0 ≤ s. (4)

We focus on simple methods having a greedy character.
Let us assume that, at step ` of its execution, a method se-
lects the left and right atoms whose indices are stored in the
ordered sets I = {i1, . . . , i`} and J = {j1, . . . , j`}, respec-
tively; note that some atoms may be selected several times,
hence the indices from a set may be repeated; however, the
pairs (i1, j1), . . . , (i`, j`) are distinct.

Orthogonal matching pursuit (OMP) [10] can be easily
adapted to a separable dictionary. Denoting X̃` the represen-
tation at step `, the corresponding residual is

R̃` = Y −D1X̃`D
T
2 . (5)

The standard OMP projects the residual on the 1D separable
dictionary, thus computing

(D2 ⊗D1)
T vecR̃` = vec(DT

1 R̃`D2). (6)

So, 2D OMP simply computes the matrix P` = DT
1 R̃`D2.

The indices (i`+1, j`+1) of the maximum absolute value in P`
give the next selected atoms from D1 and D2.

Given I andJ , the least-squares solution X̃` is computed
by noticing that

‖E(X̃`)‖F = ‖Y −
∑̀
ι=1

x̃iι,jιd1iιd
T
2jι‖F

= ‖vecY −
∑̀
ι=1

(d2jι ⊗ d1iι)x̃iι,jι‖.

(7)

Let A be the matrix whose columns are the atom Kronecker
products from above and let x be the coefficient vector
formed by the nonzero elements of X̃`; then, the error (3)
becomes ‖E(X̃`)‖F = ‖vecY −Ax‖2 and can be treated
as a plain least-squares problem for finding the nonzero co-
efficients x, like in standard OMP. A different and more
thorough demonstration of the equivalence between pairwise
and standard OMP is described in [11].

2.3. TKSVD Dictionary Update

Dictionary update is performed by TKSVD [8] by simultane-
ously updating each (i, j) dictionary atoms pair while keeping

fixed the other atoms and the representations. Given i and j,
let

Rk = E(Xk) + x
(k)
i,j d1id

T
2j (8)

denote the residual of the k-th sample without the contribu-
tion of the current atoms. With these atoms as variables, the
optimization problem becomes

min
d1i,d2j

N∑
k=1

∥∥∥Rk − x(k)i,j d1id
T
2j

∥∥∥2
F

subject to ‖d1i‖2 = 1, ‖d2j‖2 = 1.

(9)

Typically, many representation coefficients x(k)i,j are zero; the
problem is solved via a rank-1 CP decomposition. This pro-
cess is iterated by TKSVD for all atom pairs used by the
sparse representations.

Now let us assume there is another pair in which the cur-
rent atom d1i from equation (9) participates: two atoms d2j

and d2j′ from D2 both pair with d1i. Note that the sets
{k | x(k)i,j 6= 0} and {k | x(k)i,j′ 6= 0} are usually different, pos-
sibly even disjoint. Hence, when the dictionary refinement
process updates the (i, j′) pair there is a good chance that not
only the objective of (9) for the original (i, j) pair increases,
because d1i is not only no longer optimal for it, but also that
the overall error (3) increases. This may ultimately lead to a
lack of convergence and, in severe cases, even to divergence.

In fact we were able to see this exact behaviour in our
numerical experiments on synthetic data, which is why we
attacked the problem from a different angle.

2.4. AK-SVD Approach

Inspired by the AK-SVD [4] algorithm for the standard DL
problem, we keep everything fixed in equation (1) except for
either atom i of D1

min
d1i

N∑
k=1

∥∥∥R1k − d1ix
(k)
i,PkD

T
2Pk

∥∥∥2
F

s.t. ‖d1i‖2 = 1

(10)

or atom j of D2

min
d2j

N∑
k=1

∥∥∥R2k −D1Qkx
(k)
Qk,jd

T
2j

∥∥∥2
F

s.t. ‖d2j‖2 = 1

wherePk is the set of atoms in D2 that pair with atom i in D1

and Qk is the set of atoms from D1 pairing with d2j , when
representing Yk. The residuals R1k and R2k are obtained via
obvious modifications of (8). The k-th term of the sum from
(10) becomes

‖R1k‖2F − 2tr(RT
1kd1ix

(k)
i,PkD

T
2Pk)+

+x
(k)
i,PkD

T
2PkD2Pk(x

(k)
i,Pk)

T ,
(11)



Require: initial dictionaries D1 ∈ Rm×n1 , D2 ∈ Rm×n2

signals set Yk ∈ Rm×m, k = 1 : N
number of iterations T ∈ N

Ensure: learned dictionaries D1 and D2

1: for t = 1 to T do
2: Sparse coding: keeping D1 and D2 fixed, compute

sparse representations X using 2D OMP
Dictionary update:

3: for i = 1 to n1 do
4: Compute the new atom d1i using (13)
5: Update representations x(k)

i,Pk using (14), k = 1 : N
6: end for
7: for j = 1 to n2 do
8: Compute the new atom d2j using (15)
9: Update representations x(k)

Qk,j using (16), k = 1 : N
10: end for
11: end for

Algorithm 1: Pairwise Approximate K-SVD algorithm

which is minimized when the trace is maximized. We rewrite
the optimization problem (10) as

max
d1i

(
N∑
k=1

x
(k)
i,PkD

T
2PkR

T
1k

)
d1i s.t. ‖d1i‖2 = 1 (12)

whose maximum value is achieved when d1i is collinear to
the sum vector, thus giving

d1i =
t1
‖t1‖

, t1 =

N∑
k=1

R1kD2Pk(x
(k)
i,Pk)

T . (13)

Mimicking AK-SVD, we now update the signals that use d1i

in their representation. The minimization of the quadratic
form resulting from (11) gives the new optimal coefficient

(x
(k)
i,Pk)

T = (DT
2PkD2Pk)

†DT
2PkR

T
1kd1i. (14)

The same reasoning is applied for atom j in D2. Atom
d2j is updated following

d2j =
t2
‖t2‖

, t2 =

N∑
k=1

RT
2kD1Qkx

(k)
Qk,j . (15)

Then we update the representations via

x
(k)
Qk,j = (DT

1QkD1Qk)
†DT

1QkR2kd2j . (16)

Note that these dictionary update operations are guaranteed to
decrease the objective of (1).

2.5. Algorithm

We describe the proposed DL process in Algorithm 1.
Dictionaries D1 and D2 are obtained by performing T rounds

of sparse coding and dictionary update (step 1). In the sparse
coding stage we keep the dictionaries fixed and update the
representations, while during dictionary update we fix the rep-
resentations and update one dictionary at a time. Our experi-
ments showed that a good choice for T is usually somewhere
below 100 iterations.

Step 2 starts the iteration by computing the sparse repre-
sentations. Given current dictionaries D1 and D2 we use 2D
OMP, described in Section 2.2, to obtain representations Xk

with k = 1 : N . This produces results identical to standard
OMP with reduced computational overhead.

In the dictionary update stage the representations are first
fixed. We proceed by also fixing dictionary D2 and sequen-
tially updating each of the atoms in D1 (step 3). Step 4
updates an atom, using relation (13). Following AK-SVD
style, step 5 uses equation (14) to update the nonzero coeffi-
cients x(k)

i,Pk of the representations using atom d1i; of course,
only signals Yk using that atom are involved (meaning that
Pk 6= ∅).

Once all atoms of dictionary D1 are updated, the process
is repeated for dictionary D2: we fix D1 and sequentially up-
date each atom d2j (step 7) and compute the new atom (step
8) and its associated representations (step 9). Note that we
chose to perform dictionary update in order for clarity, but
other strategies can be employed such as updating the atoms
from both dictionaries in random order.

Let us analyze the number of operations necessary to per-
form a single iteration from step 1. For the sparse coding op-
eration in step 2, it has been shown in [11] that 2D OMP has
a complexity of O(mn1n2), which is 1/m that of standard
OMP. The resulting representations X contain Ns nonzeros
corresponding to just as many atom pairs from D1 and D2 re-
spectively. Let us assume, without any loss of generality, that
all atoms are used an equal number of times by the represen-
tations. Thus coefficients corresponding to atom d1i appear
Ns/n1 times in X . If we split equation (13) from step 4
based on the elements from X , we have to compute Ns/n1
products R1kd2jx

(k)
i,j , where i, j and k are fixed. This totals

to sm2N operations for updating D1. Updating the repre-
sentations in step 5 requires m2 operations for multiplying
RT

1kd1i, hence O(sm2N) over one iteration, in the least fa-
vorable case where an atom from D1 pairs with a single atom
from D2 for a signal Yk. The ensuing least squares solution
needs O(ms2) operations if an atom for D1 is paired with s
atoms from D2 for signal Yk, which is the maximum; oth-
erwise the number of operations is smaller. So, again, the
complexity over an iteration is O(sm2N). The same reason-
ing can be applied to steps 7–10. We note that AK-SVD has
the sameO(sm2N) complexity for the dictionary update (but
is slower in sparse coding). Our algorithm has thus lower
complexity than the algorithms from [6, 7] that use the CP
decomposition as basic tools (in a 1D setup, our algorithm
would relate to theirs as AK-SVD to K-SVD) and is consid-
erably faster than SeDiL [5].



Table 1. Denoising PSNR(dB) and SSIM for standard images

σnoise / PSNR Method
lena barbara boat peppers house

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

5 / 34.15
1D 38.46 0.942 37.94 0.962 36.98 0.935 37.60 0.925 39.27 0.953
2D 38.22 0.940 37.69 0.961 36.63 0.929 37.34 0.920 38.71 0.948

10 / 28.13
1D 35.30 0.907 34.21 0.931 33.47 0.878 34.63 0.876 35.62 0.901
2D 35.21 0.905 34.10 0.930 33.42 0.875 34.56 0.873 35.43 0.897

20 / 22.11
1D 32.02 0.857 30.21 0.867 29.89 0.789 31.88 0.833 32.47 0.857
2D 31.94 0.855 30.08 0.863 29.88 0.787 31.88 0.831 32.25 0.854

30 / 18.58
1D 29.96 0.817 27.75 0.803 27.90 0.727 30.12 0.804 30.44 0.828
2D 29.91 0.815 27.65 0.799 27.91 0.725 30.10 0.802 30.18 0.824

50 / 14.15
1D 27.37 0.754 24.66 0.685 25.47 0.642 27.66 0.755 27.47 0.762
2D 27.32 0.752 24.57 0.681 25.41 0.638 27.72 0.754 27.35 0.758

3. RESULTS1

Our first experiment shows the application of pairwise AK-
SVD for image denoising. To this end we use images from
the USC-SIPI database [12] to which we apply white gaussian
noise of varied standard deviation levels σnoise.

The denoising process starts by splitting the noisy image
into overlapping patches of sizem = 8 and randomly picking
a setN = 4000 such patches for training a pair of dictionaries
of n1 = n2 = 16 atoms. In our experiment we use just a few
DL iterations, T = 20, with target sparsity s = 6. We repeat
each experiment, using the same parametrization and training
data, to obtain an AK-SVD dictionary of n = n1n2 atoms.
With the resulting dictionaries we perform sparse representa-
tion on the entire set of overlapping patches and reconstruct
the image via pixel averaging.

Table 1 presents the results. We picked the images and
noise levels that are often used for both standard [13] and
separable [5] DL methods. Denoising quality is measured via
the peak signal-to-noise ratio (PSNR) and the structural sim-
ilarity index (SSIM) [14] between the original and denoised
images. We note that the results for pairwise AK-SVD (de-
noted 2D in the table) and standard AK-SVD (denoted 1D)
are similar if not identical. Although they are lower than those
given by BM3D [15], they are comparable with those from
other pairwise DL papers, like [6]; for example, the PSNRs
reported there for barbara (better than those from [5]) are:
37.60, 34.03, 30.27, 27.94, 23.64.

Even though the number of atoms in the AK-SVD dictio-
nary is the same as the total number of pairs in the 2D-case,
the standard method has the advantage of specializing each
atom individually, whereas in the separable case that is not
possible as one atom from the left dictionary can pair with
more than one atom in the right dictionary and vice-versa.
Though masked in the denoising case, this effect is clearly
visible if we focus only on learning performance. As de-
picted in Figure 1, our experiments showed that, when vary-
ing n1 and n2, for the same input data and parametrization

1Code available at https://github.com/pirofti/pair_ksvd

Fig. 1. RMSE evolution over 300 iterations for varied dictio-
nary sizes.

as in the denoising case, learning through standard AK-SVD
is outperformed by pairwise AK-SVD somewhere between
n1 = n2 = 64 and n1 = n2 = 96. Note that we can afford
the time-debt incurred by using larger dictionaries due to the
improved complexity of pairwise AK-SVD. Here we measure
learning performance in terms of RMSE between the training

signals and the representations
√∑N

k=1 ‖E(Xk)‖2F /
√
m2N .

See (2) for adapting RMSE for standard AK-SVD.

4. CONCLUSIONS

We have proposed a coordinate descent algorithm for solving
the pairwise dictionary learning problem (1). The dictionary
update stage is based on coordinate descent: the atoms of both
dictionaries and the corresponding representations are succes-
sively optimized while all other variables are fixed. This AK-
SVD style algorithm has low complexity and gives results that
are comparable with those of more complex algorithms.
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