Laborator 11 - Elemente de sincronizare

1 Variabile conditie

In programele 1n care folosim paralelismul, cu fire de executie concurente, o metoda de semna-
lizare/sincronizare e reprezentata de variabilele conditie (pthread_cond_t).

O variabila conditie este utilizata impreuna cu un mutex pentru:

e a testa o conditie;
e a pune firul de executie in asteptare daca conditia este falsa;

e a semnala firelor de executie cand conditia devine adevarata.

Daca in cazul variabilelor conditie POSIX conditia logica asociata lor este implicita, in cazul
implementarii std: :cond_variable aici conditia poate fi explicita.

Mai clar, variabilele conditie pun la dispozitie doua categorii de functii:

e pthread_cond_wait, care pune firul de executie apelant in starea de wait pana cand se
indeplineste motivul pentru care facem wait — fie o conditie logica, fie altceva important
intr-un program, cum ar fi ajungerea si a ultimului fir de executie la o bariera (care, daca
stati sa va ganditi, este tot o conditie logica numar_fire_executie_ajunse_la_bariera
== total_fire_executie).

e pthread_cond_signal/pthread_cond_broadcast — functii care trezesc din starea wait un
fir de executie sau toate firele de executie care asteapta pe variabila conditie pe care facem
signal sau broadcast. Important de remarcat ca, daca in cazul semafoarelor un sem_post
incrementeaza contorul intern si primul fir de executie care vine si face sem_wait va trece
decrementand acelasi contor, pthread_cond_signal/pthread_cond_broadcast se pierde
daca nu se afla nimeni care deja asteapta pe variabila conditie.

1.1 Initializare

pthread_cond_t cond;
pthread_cond_init(&cond, NULL);

1.2 Operatii

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mtx);
int pthread_cond_signal(pthread_cond_t *cond) ;
int pthread_cond_broadcast(pthread_cond_t *cond) ;

1.3 Comentariu despre pthread_cond_wait

pthread_cond_wait (pthread_cond_t *cond, pthread _mutex_t *mtx):

Functia este atipica, In sensul ca, pentru a ne asigura ca putem sa ne punem in starea de wait
doar daca o conditie nu este indeplinita, pasii pentru a apela functia sunt:

e se face lock pe mtx;
e se verificd conditia care, daca nu e Indeplinita, trebuie sa ne duca in starea de wait;

e se apeleaza functia care, atomic, elibereaza mutexul si pune firul de executie in starea de
wait pe variabila conditie;

e cand firul de executie este semnalizat, reia executia doar dupa ce a reusit sa faca din nou
lock pe mutex-ul mtx.

In acest fel avem siguranta ci, odat# verificatd conditia, ne putem pune in starea wait cu
certitudinea cd nimic nu a survenit asupra conditiei protejate de mutexul mtx si ca, odata
treziti, putem gasi conditia in starea in care era cidnd am fost semnalizati, pentru ca mai Intai
se asigura accesul exclusiv prin luarea mutexului mtx odata ce am fost treziti.

1.4 Exemplu minimal

asteptarea pe o variabila conditie:

pthread_mutex_lock (&mtx) ;

while (!ready)
pthread_cond_wait(&cond, &mtx);

/* ready == 1 */

pthread_mutex_unlock(&mtx) ;

semnalizarea unui fir de executie pe o variabila conditie:
pthread_mutex_lock (&mtx) ;

ready = 1;

pthread_cond_signal (&cond) ;

pthread_mutex_unlock(&mtx) ;

semnalizarea tuturor firelor de executie care asteapta pe o variabila conditie:
pthread_mutex_lock (&mtx) ;

ready = 1;

pthread_cond_broadcast (&cond) ;

pthread_mutex_unlock(&mtx) ;

2 Comparatie cu semafoarele

Variabilele de conditie diferda de semafoare prin faptul ca:

e nu au valoare interna; un semnal trimis unei variabile conditie pe care nu asteapta nimeni
in acel moment se pierde;

e nu mentin contor;

e depind de un mutex;

e sunt folosite exclusiv pentru asteptarea unei conditii logice sau producerii unui eveniment.

Tabel sumar:

Caracteristica Semafoare Variabile conditie

Stare contor nu
Blocare S=0 conditie falsa
Semnalizare persistenta se pierde daca nimeni nu asteapta

3 Read-Write locks

Un read-write lock (RW-lock) permite acces concurent pentru mai multi cititori sau acces exclusiv
pentru un singur scriitor.

Daca avem mai multe fire de executie care doar vor sa citeasca resurse partajate, nu avem nici
un race condition atdta vreme cat nu exista un fir de executie care sa doreasca sa scrie, astfel ca
putem oferi acces in paralel reader-ilor, dar trebuie s& asiguram acces exclusiv in cazul in care
dorim sa rescriem o resursa partajata.

3.1 Initializare

pthread_rwlock_t rw;
pthread_rwlock_init(&rw, NULL);
3.2 Operatii

Citire:
pthread_rwlock_rdlock(&rw);

/* .. */
pthread_rwlock_unlock(&rw) ;

Scriere:

pthread_rwlock_wrlock (&rw);
VA RN 74
pthread_rwlock_unlock(&rw) ;
RW-lock-ul garanteaza:

e cel mult un scriitor simultan;

e oricati cititori simultan, daca nu exista scriitor.

4 Exemplu minimal

#define N 16
int al[N];
pthread_rwlock_t rw;

void *reader(void *v)

{
pthread_rwlock_rdlock(&rw) ;
int x = a[0];
pthread_rwlock_unlock(&rw) ;
return NULL;

}

void *writer(void *v)

{
pthread_rwlock_wrlock(&rw) ;
a[0]++;
pthread_rwlock_unlock(&rw) ;
return NULL;

}

RW-lock-ul este util in programe in care operatiile de citire sunt mult mai frecvente decat cele
de scriere.

5 Sarcini de laborator

1. Reimplementarea barierei din laboratorul 10 folosind:
e o variabila conditie.
2. Implementati un program in care:

e exista o variabila globala a;

e porniti M thread-uri cititoare si K thread-uri scriitoare cu un id de la 1 la K, in mod
aleator, la o distanta de milisecunde intre ele;

e protejati variabila globala cu un pthread_rwlock_t;
e cititorii citesc variabila globala si o afiseaza;
e scriitorii modifica variabila globala cu id-ul lor.

3. Modificati programul anterior astfel incit scriitorii sa aiba prioritate fata de cititori, evi-
tand blocarea lor pe termen lung (starvation).

