
Laborator 11 - Elemente de sincronizare

1 Variabile condit, ie

În programele în care folosim paralelismul, cu fire de execut, ie concurente, o metodă de semna-
lizare/sincronizare e reprezentată de variabilele condit, ie (pthread_cond_t).

O variabilă condit, ie este utilizată împreună cu un mutex pentru:

• a testa o condit, ie;

• a pune firul de execut, ie în as,teptare dacă condit, ia este falsă;

• a semnala firelor de execut, ie când condit, ia devine adevărată.

Dacă în cazul variabilelor condit, ie POSIX condit, ia logică asociată lor este implicită, în cazul
implementării std::cond_variable aici condit, ia poate fi explicită.

Mai clar, variabilele condit, ie pun la dispozit, ie două categorii de funct, ii:

• pthread_cond_wait, care pune firul de execut, ie apelant în starea de wait până când se
îndeplines,te motivul pentru care facem wait – fie o condit, ie logică, fie altceva important
într-un program, cum ar fi ajungerea s, i a ultimului fir de execut, ie la o barieră (care, dacă
stat, i să vă gândit, i, este tot o condit, ie logică numar_fire_executie_ajunse_la_bariera
== total_fire_executie).

• pthread_cond_signal/pthread_cond_broadcast – funct, ii care trezesc din starea wait un
fir de execut, ie sau toate firele de execut, ie care as,teaptă pe variabila condit, ie pe care facem
signal sau broadcast. Important de remarcat că, dacă în cazul semafoarelor un sem_post
incrementează contorul intern s, i primul fir de execut, ie care vine s, i face sem_wait va trece
decrementând acelas, i contor, pthread_cond_signal/pthread_cond_broadcast se pierde
dacă nu se află nimeni care deja as,teaptă pe variabila condit, ie.

1.1 Init, ializare

pthread_cond_t cond;
pthread_cond_init(&cond, NULL);

1.2 Operat, ii

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mtx);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

1



1.3 Comentariu despre pthread_cond_wait

pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mtx):

Funct, ia este atipică, în sensul că, pentru a ne asigura că putem să ne punem în starea de wait
doar dacă o condit, ie nu este îndeplinită, pas, ii pentru a apela funct, ia sunt:

• se face lock pe mtx;

• se verifică condit, ia care, dacă nu e îndeplinită, trebuie să ne ducă în starea de wait;

• se apelează funct, ia care, atomic, eliberează mutexul s, i pune firul de execut, ie în starea de
wait pe variabila condit, ie;

• când firul de execut, ie este semnalizat, reia execut, ia doar după ce a reus, it să facă din nou
lock pe mutex-ul mtx.

În acest fel avem sigurant,a că, odată verificată condit, ia, ne putem pune în starea wait cu
certitudinea că nimic nu a survenit asupra condit, iei protejate de mutexul mtx s, i că, odată
trezit, i, putem găsi condit, ia în starea în care era când am fost semnalizat, i, pentru că mai întâi
se asigură accesul exclusiv prin luarea mutexului mtx odată ce am fost trezit, i.

1.4 Exemplu minimal

asteptarea pe o variabila conditie:
pthread_mutex_lock(&mtx);
while (!ready)

pthread_cond_wait(&cond, &mtx);
/* ready == 1 */
pthread_mutex_unlock(&mtx);

semnalizarea unui fir de executie pe o variabila conditie:
pthread_mutex_lock(&mtx);
ready = 1;
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mtx);

semnalizarea tuturor firelor de executie care asteapta pe o variabila conditie:
pthread_mutex_lock(&mtx);
ready = 1;
pthread_cond_broadcast(&cond);
pthread_mutex_unlock(&mtx);

2 Comparat, ie cu semafoarele

Variabilele de condit, ie diferă de semafoare prin faptul că:

• nu au valoare internă; un semnal trimis unei variabile condit, ie pe care nu as,teaptă nimeni
în acel moment se pierde;

• nu ment, in contor;

• depind de un mutex;

2



• sunt folosite exclusiv pentru as,teptarea unei condit, ii logice sau producerii unui eveniment.

Tabel sumar:

Caracteristică Semafoare Variabile condit, ie
Stare contor nu
Blocare S=0 condit, ie falsă
Semnalizare persistentă se pierde dacă nimeni nu as,teaptă

3 Read-Write locks

Un read-write lock (RW-lock) permite acces concurent pentru mai mult, i cititori sau acces exclusiv
pentru un singur scriitor.

Dacă avem mai multe fire de execut, ie care doar vor să citească resurse partajate, nu avem nici
un race condition atâta vreme cât nu există un fir de execut, ie care să dorească să scrie, astfel că
putem oferi acces în paralel reader-ilor, dar trebuie să asigurăm acces exclusiv în cazul în care
dorim să rescriem o resursă partajată.

3.1 Init, ializare

pthread_rwlock_t rw;
pthread_rwlock_init(&rw, NULL);

3.2 Operat, ii

Citire:

pthread_rwlock_rdlock(&rw);
/* ... */
pthread_rwlock_unlock(&rw);

Scriere:

pthread_rwlock_wrlock(&rw);
/* ... */
pthread_rwlock_unlock(&rw);

RW-lock-ul garantează:

• cel mult un scriitor simultan;

• oricât, i cititori simultan, dacă nu există scriitor.

4 Exemplu minimal

3



#define N 16
int a[N];
pthread_rwlock_t rw;

void *reader(void *v)
{

pthread_rwlock_rdlock(&rw);
int x = a[0];
pthread_rwlock_unlock(&rw);
return NULL;

}

void *writer(void *v)
{

pthread_rwlock_wrlock(&rw);
a[0]++;
pthread_rwlock_unlock(&rw);
return NULL;

}

RW-lock-ul este util în programe în care operat, iile de citire sunt mult mai frecvente decât cele
de scriere.

5 Sarcini de laborator

1. Reimplementarea barierei din laboratorul 10 folosind:

• o variabilă condit, ie.

2. Implementat, i un program în care:

• există o variabilă globală a;
• pornit, i M thread-uri cititoare s, i K thread-uri scriitoare cu un id de la 1 la K, în mod

aleator, la o distant,ă de milisecunde între ele;
• protejat, i variabila globală cu un pthread_rwlock_t;
• cititorii citesc variabila globală s, i o afis,ează;
• scriitorii modifică variabila globală cu id-ul lor.

3. Modificat, i programul anterior astfel încât scriitorii să aibă prioritate fat,ă de cititori, evi-
tând blocarea lor pe termen lung (starvation).

4


