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Memory Access

What happens with the Pts domain in the program below?

int A[4][8] = {...};
uint i, j;
uint sum = 0;

for (i = 0; i < 4; i++)
for (j = 0; j < 8; j++)

sum += A[i][j];

printf("sum = %d\n", sum);
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The Pts Abstract Domain

Definition
Define X the finite set of variables of a program P and A the finite set of
addresses towards which these variables can point.
Then Pts = X → P(A) represents the set of maps that tie each variable x ∈ X to
a subset of addresses A(x) ∈ A.

Let A1,A2,A′ ∈ Pts.
Update: A ∈ Pts becomes A′ = {A ∪ [x → a] | a ∈ A} such that A′(x) = a and
A′(y) = A(y), ∀y ̸= x.
Order: A1 ≤A A2 ⇐⇒ A1(x) ⊆ A2(x), ∀x ∈ X

Join: A′ = A1 ∨A A2 s.t. A′(x) = A1(x) ∪ A2(x), ∀x ∈ X .
Meet: The meet operation can be seen as an update operation that helps us filter
the elements of A.
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The Poly Abstract Domain
The lattice (Poly,≤P,∨P,∧P):

• ≤P is the inclusion operator ⊆
• ∨P = Υ is the join operation for polyhedra
• ∧P is the meet operation for sets

The lattice is incomplete because the join and meet operations, when applied to
an arbitrary number of polyhedra, can lead to a non-polyhedra object.
The widening operator together with the incomplete lattice restrain the number of
fixed points that can be attained.

Definition
A stable polyhedra obtained at convergence is generally a post-fixpoint: a
polyhedra that contains the polyhedra of the fixed point. An approximation.

General assignment operations can be implemented as:

P � x := e = ∃t(J{x = t}K ∧P ∃x(P ∧P J{t = e}K))
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The Mult Abstract Domain

Let M,M′,M1,M2 ∈ Mult.
Update: M → M′ = M[x → n′] =⇒ M′(x) = n′ and M′(y) = M(y), ∀y ̸= x.
Join: M′ = M1 ∨M M2 s.t. M′(x) = min(M1(x),M2(x)), ∀x ∈ X .
Inclusion: M1 ⊆M M2 ⇐⇒ M1(x) ≥ M2(x), ∀x ∈ X .
Exercise: Find the ⊤ element: the largest element from the lattice. Explain.
Let Equ = Lin × Z be the set of linear equations of the type e = c, where
e ∈ Lin, c ∈ Z.
Meet: ∧M : Mult × Equ → (Mult ∪ {⊥M}), where ⊥M tags invalid states.
The intersection operator adds the information provided by a new equation:
M′ = M ∧M (e = c).

M′ = M
[
xj → max

(
M(xj),min(δ(c),min

i,i̸=j
δ(ai) + M(xi))− δ(aj)

)]
Invalid state if mini=1,...,n δ(ai) + M(xi) > δ(c).
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The Num Abstract Domain

Let Num = (Poly × Mult) ∪ {⊥N}, where ⊥N represents an unreachable state,
that is impossible to attain, in the program definition. We define:

• (P,M) ⊆N (P′,M′) ⇐⇒ (P ⊆P P′) ∧ (M ⊆M M′)

• (P′,M′) = (P1,M1) ∨N (P2,M2) ⇐⇒ (P′ = P1 ∨P P2) ∧ (M′ = M1 ∨M M2)

• (P′,M′) = (P,M)� x := e ⇐⇒ (P′ = P � x := e) ∧ (M′ = M � x := e)
• (P′,M′) = (P,M)� x := e ≫ n ⇐⇒ (P′ = P � x := e ≫ n) ∧ (M′ =

M � x := e ≫ n)
• (P′,M′) = ∃x(P,M) ⇐⇒ (P′ = ∃x(P)) ∧ (M′ = ∃x(M))

• (P,M) ∧N {e = c} =

{
⊥N if P′ = ∅ or M′ = ⊥M

(P′,M′) otherwise
, where

P′ = P ∧P J{e = c}K and M′ = M ∧M {e = c}.
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Num reductions

Note that the Num meet operator ∧N has the following reduction property:

(P,M) ∧N {e = c} = ⊥N if P′ = ∅ or M′ = ⊥M

where states such as (∅,M) or (P,⊥M) lead to ⊥N.
This reduction avoids the propagation of unsatisfaiable domains as seen in the
strings example.

Definition
Reduced product. Combination of two domains that is implemented as one in
order to provide states where no further reduction is possible.

Thus such a reduction is possible between the Poly and Mult domains.

In the following we are going to see an example that leads to ways of
incorporating information Mult → Poly and Poly → Mult.
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Example: Reduction

Let N denote the initial state in which the variable x is unbound such that

L1: x = 4*y;
L2: if (rand())
L3: y--;

Let us analyse this from the Num perspective:

• L1 defines N1 = N � x := 4y
• L3 defines N2 = N1 � y := y − 1 guarded by the if at L2
• N12 = N1 ∨N N2 represents the state after the if statement

Example:
• {(0, 0), (4, 1), (8, 2), (12, 3) . . . (4k, k)} ∈ N1

• {(0,−1), (4, 0), (8, 1), (12, 2) . . . (4k, k − 1)} ∈ N2

• N12 = N1 ∨N N2 and for the first element (0, 0)Υ(4, 0) = ([0, 4], 0)

• we just got three new possible elements!
• the same is true for y = 1 with points (4, 1) and (8, 1)
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Poly to Mult Propagation

The two lines represent N1 and N2, while the grey area represents N12.

Source: A. Simon, Value Range Analysis of C Programs, 2009

Notice that adding the inequality x ≤ 7 restricts the maximum value of x to 7!
Is that OK?

Why not? Because x is supposed to be a multiple of 4.
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Example: Reduction via Mult

We should be able to restrict N12 ∧N {x ≤ 7} by information from the Mult
domain:

• from M1 ∈ N1 we have M1(x) = 2

• a linear translation by 4 implies that its multiplicity remains the same in N2

• from N2 it means it also remains the same in N12 due to the properties of ∨M
• so the value of x after x ≤ 7 is x = 4

More generally we reduce the states to N12 ∧N {x ≤ 4}.
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Counter Example

Let us add two more instructions to our program:

L1: x = 4*y;
L2: if (rand())
L3: y--;
L4: z = x+1
L5: if (z <= 8) {}

This adds to the analysis:
• L4 defines N3 = N12 � z := x + 1

• L5 defines N4 = N3 ∧N {z ≤ 8}
• which should be equivalent to x ≤ 7

• still we do not know anything about the multiplicity of z
• we assume M(z) = 0!

We can not refine N4 without analyzing all the possible relationships of z with
other variables in N3.
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Incorporating Mult → Poly

Idea: scale each variable x ∈ P by 1/2M(x)

• intersection: (P,M) ∧N {ax ≤ c}
• scaled version: P′ = P ∧N J{(2M(x1)a1, . . . , 2M(xn)an)x ≤ c}K
• Num with different multiplicities M and M′ affect ⊆N and ∨N operations
• M(x) > M′(x) leads to scaling by 2M(x)−M′(x)

Example: P3 ⊆P J{2M3(z)z = 2M3(x)x + 1}K where M3(z) = 0 and M3(x) = 2.
Thus J{2M3(z)z = 2M3(x)x + 1}K = J{20z = 22x + 1}K = J{z = 4x + 1}K

=⇒ z ≤ 8 ⇐⇒ 4x + 1 ≤ 8 ⇐⇒ x ≤ 7

4
= 1

3

4
⇐⇒ x ≤ 1 =⇒ z ≤ 5

Remark: Introducing the multiplicity information to polyhedras reduces their
coefficients (see coef. growth issue). In our example the reduction tightens
x ≤ 1 · 2M(x) = 4 and z ≤ 5.
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Incorporating Poly → Mult

We can also incorporate information from Poly to Mult.

Example: P ⊆P J{x = 0}K then M ∈ Mult is M(x) = 64.
Remark: In fact scaling by 1/2M(x) in Poly can only be done through information
propagation from Mult.

Notations: Let N(ax + c) = [l, u]≡d be the set of values {l, l + d, . . . , u} ⊆ Z that
ax + c can take in N.
Let JNK ⊆ Z|X | be the set of all feasible points in N ∈ Num.
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Casting and Wrapping
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Casting
Let us study the following code snippet:

while(*str) {
dist[*str]++;
str++;

};

Which warning will we get? C standard asks for int iterators not char’s.

We fix it with a cast:
while(*str) {

dist[(int)*str]++;
str++;

};
Does this pass peer-review? No! Negative indices are possible.
Fine, make it unsigned...

while(*str) {
dist[(uint)*str]++;
str++;

};
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Casting: Warnings Fixed

while(*str) {
dist[(uint)*str]++;
str++;

};

Happy?

You should not be: C standard dictates: char -> int -> uint!
So what are the possible dist iterators? [232 − 128, 232 − 1] ∪ [0, 127]

Conclusion: we get positive indices but some are out-of-bounds! This is due to
the wrapping of the negative indices.
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Signed versus Unsigned

Source: A. Simon, Value Range Analysis of C Programs, 2009

Remarks
• subtracting from an integer is the same as adding the largest integer
• example: (1, 1, 1, 1) + (0, 0, 0, 1) = (0, 0, 0, 0)

• negative range of signed wraps to upper range of unsigned
• miss-match against the possible infinite range of polyhedral variables
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Useful notations
Before handling the out-of-bounds case in our model, let us settle notations.

• Let B = {0, 1} be the Boolean set
• Let b = (bw−1, . . . , b0) ∈ Bw be a vector of bits
• uint: valw,uint(b) =

∑w−1
i=0 bi2i

• int: valw,int(b) =
∑w−2

i=0 bi2i − bw−12
w−1

• Let binw : Z → Bw which converts an integer to the lower w bits
• binw(v) = b ⇐⇒ ∃b′ ∈ Bqs.t.valq+w,int(b′∥b) = v
• in the above ∥ is the concatenation operator
• examples: bin3(15) = (1, 1, 1) val5,int((0, 1, 1, 1, 1)) = 15

• denote +w and ∗w addition and multiplication with truncation at w bits
• sign agnostic: (1, 1, 1, 1) +4 (0, 0, 0, 1) = (0, 0, 0, 0)

• let B = B8 the set of bytes and Σ = B232 all states of 4GB processes
• a given memory state is then σ ∈ Σ

• a byte access is σs : [0, 232 − 1] → Bs with s ∈ {1, 2, 4, 8} #bytes to read
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Implicit Wrapping
Relationship between Poly variables and process memory state

Example: let x be a char and P(x) = [−1, 2].
Then we have 111111112, 000000002, 000000012, 000000102
or bin8s(v) with v ∈ [−1, 2] represented by a sequence of s bytes.

Remark: we can define bitss
a : Z → P(Σ) for all stores of 8s bits at address

a = addr(x) corresponding to v ∈ P(x).
bitss

a(v) = {(r8·232 . . . r8(a+s))∥bin8s(v)∥(r8a−1 . . . r0))}

This considers only the lower 8s bits of v; bits1a(0) = bits1a(256).
For values (v1, . . . , vn) ∈ Zn we have variables (x1, . . . , xn) leading to stores∩

i∈[1,n] bitssi
ai(vi) where ai is the address of xi and si is the store size in bytes.

The polyhedron P is then a set of stores γs
a : Poly → P(Σ)

γs
a(P) =

∪
v∈P∩Zn

 ∩
i∈[1,n]

bitssi
ai(vi)


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Implicit Wrapping: Set of Stores and Wraping

The polyhedron P is then a set of stores γs
a : Poly → P(Σ)

γs
a(P) =

∪
v∈P∩Zn

 ∩
i∈[1,n]

bitssi
ai(vi)


• γs

a maps the abstract result to the actual wrapped result in the concrete
process

• it gets us implicit wrapping
• the operator models without explicit checks for wrapping (overflows)
• a guard such as x ≤ y can not be modeled through P ∧P Jx ≤ yK
• we need explicit wrapping
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Example: Explicit Wrapping

Let P = Jx + 1024 = 8y,−64 ≤ x ≤ 448K and the uint8 variables x and y.
Suppose P feeds into the guard x ≤ y.
Let (x, y) = (384, 176) ∈ P.
Given σ ∈ γs

a(384, 176) implicit wrapping dictates that:

val8,uint(σ1(addr(x))) = 128 val8,uint(σ1(addr(y))) = 176

which implies that x ≤ y is true when x, y are uint8 in σ.

But notice that (384, 176) ∧P Jx ≤ yK = ∅!

This shows that it is not correct to model the guard as P ∧P Jx ≤ yK.
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Explicit Wrapping

Source: A. Simon, Value Range Analysis of C Programs, 2009

• x range overflows on the two neighbouring quadrants
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Explicit Wrapping
• x range overflows on the two

neighboring quadrants
• partition P
• P−1 = P ∧P J−256 ≤ x ≤ −1K
• P0 = P ∧P J0 ≤ x ≤ 255K
• P1 = P ∧P J256 ≤ x ≤ 511K
• translate by 256 units P−1 and P1

towards P0

• gray region is P′ ∧P Jx ≤ yK
P′ = (P0 ∨P (P−1 � x := x + 256) ∨P (P1 � x := x − 256)) ∨P Jx ≤ yK)

Or more precise P′′:

(P0∧PJx ≤ yK)∨P((P−1�x := x+256)∧PJx ≤ yK)∨P((P1�x := x−256)∧PJx ≤ yK)
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Infinite Wrapping

Source: A. Simon, Value Range Analysis of C Programs, 2009

• depicts P = Jx + 1024 = 8yK
• in general we do not have only 3 quadrants
• wrapping can require infinite join of state spaces
• Pi = (P�x := x+i·28∧PJ0 ≤ x ≤ 255K)∨P(P�x := x−i·28∧PJ0 ≤ x ≤ 255K)
• right figure is equivalent to full type range: ∃x(P) ∧p J0 ≤ x ≤ 255K
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Precise Wrapping of Two Variables

Source: A. Simon, Value Range Analysis of C Programs, 2009
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Wrapping Algorithm

Source: A. Simon, Value Range Analysis of C Programs, 2009
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