Special Topics in Logic and Security 1 Reduced Product. Type Casting and Wrapping.

Paul Irofti

Master Year II, Sem. I, 2023-2024

Memory Access

What happens with the Pts domain in the program below?

```
int A[4][8] = {...};
uint i, j;
uint sum = 0;
for (i = 0; i < 4; i++)
    for (j = 0; j < 8; j++)
    sum += A[i][j];
printf("sum = %d\n", sum);
```


The Pts Abstract Domain

Definition

Define \mathcal{X} the finite set of variables of a program P and \mathcal{A} the finite set of addresses towards which these variables can point.

Then Pts $=\mathcal{X} \rightarrow \mathcal{P}(\mathcal{A})$ represents the set of maps that tie each variable $x \in \mathcal{X}$ to a subset of addresses $A(x) \in \mathcal{A}$.

Let $A_{1}, A_{2}, A^{\prime} \in P t s$.
Update: $A \in P$ ts becomes $A^{\prime}=\{A \cup[x \rightarrow a] \mid a \in \mathcal{A}\}$ such that $A^{\prime}(x)=a$ and $A^{\prime}(y)=A(y), \forall y \neq x$.

Order: $A_{1} \leq{ }_{A} A_{2} \Longleftrightarrow A_{1}(x) \subseteq A_{2}(x), \forall x \in \mathcal{X}$
Join: $A^{\prime}=A_{1} \vee_{A} A_{2}$ s.t. $A^{\prime}(x)=A_{1}(x) \cup A_{2}(x), \forall x \in \mathcal{X}$.
Meet: The meet operation can be seen as an update operation that helps us filter the elements of A.

The Poly Abstract Domain

The lattice (Poly, $\leq_{p}, \vee_{P}, \wedge_{P}$):

- \leq_{P} is the inclusion operator \subseteq
- $\vee_{P}=\bar{\Upsilon}$ is the join operation for polyhedra
- \wedge_{P} is the meet operation for sets

The lattice is incomplete because the join and meet operations, when applied to an arbitrary number of polyhedra, can lead to a non-polyhedra object.

The widening operator together with the incomplete lattice restrain the number of fixed points that can be attained.

Definition

A stable polyhedra obtained at convergence is generally a post-fixpoint: a polyhedra that contains the polyhedra of the fixed point. An approximation.

General assignment operations can be implemented as:

$$
P \triangleright x:=e=\exists_{t}\left(\llbracket\{x=t\} \rrbracket \wedge_{P} \exists_{x}\left(P \wedge_{P} \llbracket\{t=e\} \rrbracket\right)\right)
$$

The Mult Abstract Domain

Let $M, M^{\prime}, M_{1}, M_{2} \in$ Mult.
Update: $M \rightarrow M^{\prime}=M\left[x \rightarrow n^{\prime}\right] \Longrightarrow M^{\prime}(x)=n^{\prime}$ and $M^{\prime}(y)=M(y), \forall y \neq x$.
Join: $M^{\prime}=M_{1} \vee_{M} M_{2}$ s.t. $M^{\prime}(x)=\min \left(M_{1}(x), M_{2}(x)\right), \forall x \in \mathcal{X}$.
Inclusion: $M_{1} \subseteq_{M} M_{2} \Longleftrightarrow M_{1}(x) \geq M_{2}(x), \forall x \in \mathcal{X}$.
Exercise: Find the T element: the largest element from the lattice. Explain.
Let $E q u=\operatorname{Lin} \times \mathbb{Z}$ be the set of linear equations of the type $e=c$, where $e \in \operatorname{Lin}, c \in \mathbb{Z}$.

Meet: $\wedge_{M}: M u l t \times E q u \rightarrow\left(\right.$ Mult $\left.\cup\left\{\perp_{M}\right\}\right)$, where \perp_{M} tags invalid states. The intersection operator adds the information provided by a new equation: $M^{\prime}=M \wedge_{M}(e=c)$.

$$
M^{\prime}=M\left[x_{j} \rightarrow \max \left(M\left(x_{j}\right), \min \left(\delta(c), \min _{i, i \neq j} \delta\left(a_{i}\right)+M\left(x_{i}\right)\right)-\delta\left(a_{j}\right)\right)\right]
$$

Invalid state if $\min _{i=1, \ldots, n} \delta\left(a_{i}\right)+M\left(x_{i}\right)>\delta(c)$.

The Num Abstract Domain

Let $N u m=(P o l y \times M u l t) \cup\left\{\perp_{N}\right\}$, where \perp_{N} represents an unreachable state, that is impossible to attain, in the program definition. We define:

- $(P, M) \subseteq_{N}\left(P^{\prime}, M^{\prime}\right) \Longleftrightarrow\left(P \subseteq_{P} P^{\prime}\right) \wedge\left(M \subseteq_{M} M^{\prime}\right)$
- $\left(P^{\prime}, M^{\prime}\right)=\left(P_{1}, M_{1}\right) \vee_{N}\left(P_{2}, M_{2}\right) \Longleftrightarrow\left(P^{\prime}=P_{1} \vee_{P} P_{2}\right) \wedge\left(M^{\prime}=M_{1} \vee_{M} M_{2}\right)$
- $\left(P^{\prime}, M^{\prime}\right)=(P, M) \triangleright x:=e \Longleftrightarrow\left(P^{\prime}=P \triangleright x:=e\right) \wedge\left(M^{\prime}=M \triangleright x:=e\right)$
- $\left(P^{\prime}, M^{\prime}\right)=(P, M) \triangleright x:=e \gg n \Longleftrightarrow\left(P^{\prime}=P \triangleright x:=e \gg n\right) \wedge\left(M^{\prime}=\right.$ $M \triangleright x:=e \gg n)$
- $\left(P^{\prime}, M^{\prime}\right)=\exists_{x}(P, M) \Longleftrightarrow\left(P^{\prime}=\exists_{x}(P)\right) \wedge\left(M^{\prime}=\exists_{x}(M)\right)$
- $(P, M) \wedge_{N}\{e=c\}=\left\{\begin{array}{ll}\perp_{N} & \text { if } P^{\prime}=\emptyset \text { or } M^{\prime}=\perp_{M} \\ \left(P^{\prime}, M^{\prime}\right) & \text { otherwise }\end{array}\right.$, where

$$
P^{\prime}=P \wedge_{P} \llbracket\{e=c\} \rrbracket \text { and } M^{\prime}=M \wedge_{M}\{e=c\} .
$$

Num reductions

Note that the Num meet operator \wedge_{N} has the following reduction property:

$$
(P, M) \wedge_{N}\{e=c\}=\perp_{N} \quad \text { if } P^{\prime}=\emptyset \text { or } M^{\prime}=\perp_{M}
$$

where states such as (\emptyset, M) or $\left(P, \perp_{M}\right)$ lead to \perp_{N}.
This reduction avoids the propagation of unsatisfaiable domains as seen in the strings example.

Definition
Reduced product. Combination of two domains that is implemented as one in order to provide states where no further reduction is possible.

Thus such a reduction is possible between the Poly and Mult domains.
In the following we are going to see an example that leads to ways of incorporating information Mult \rightarrow Poly and Poly \rightarrow Mult.

Example: Reduction

Let N denote the initial state in which the variable x is unbound such that

```
L1: x = 4*y;
L2: if (rand())
L3: y--;
```

Let us analyse this from the Num perspective:

Example: Reduction

Let N denote the initial state in which the variable x is unbound such that
L1: x = 4*y;
L2: if (rand())
L3: $\quad \mathrm{y}-$ -
Let us analyse this from the Num perspective:

- L1 defines $N_{1}=N \triangleright x:=4 y$

Example: Reduction

Let N denote the initial state in which the variable x is unbound such that
L1: x = 4*y;
L2: if (rand())
L3: $\quad \mathrm{y}-$ -
Let us analyse this from the Num perspective:

- L1 defines $N_{1}=N \triangleright x:=4 y$
- L3 defines $N_{2}=N_{1} \triangleright y:=y-1$ guarded by the if at L2

Example: Reduction

Let N denote the initial state in which the variable x is unbound such that
L1: x = 4*y;
L2: if (rand())
L3: $\quad \mathrm{y}-$ -
Let us analyse this from the Num perspective:

- L1 defines $N_{1}=N \triangleright x:=4 y$
- L3 defines $N_{2}=N_{1} \triangleright y:=y-1$ guarded by the if at L2
- $N_{12}=N_{1} \vee_{N} N_{2}$ represents the state after the if statement

Example:

- $\{(0,0),(4,1),(8,2),(12,3) \ldots(4 k, k)\} \in N_{1}$
- $\{(0,-1),(4,0),(8,1),(12,2) \ldots(4 k, k-1)\} \in N_{2}$
- $N_{12}=N_{1} \vee_{N} N_{2}$ and for the first element $(0,0) \bar{\Upsilon}(4,0)=([0,4], 0)$
- we just got three new possible elements!
- the same is true for $y=1$ with points $(4,1)$ and $(8,1)$

$\underline{\text { Poly to Mult Propagation }}$

The two lines represent N_{1} and N_{2}, while the grey area represents N_{12}.

Source: A. Simon, Value Range Analysis of C Programs, 2009

Notice that adding the inequality $x \leq 7$ restricts the maximum value of x to 7 ! Is that OK?

$\underline{\text { Poly to Mult Propagation }}$

The two lines represent N_{1} and N_{2}, while the grey area represents N_{12}.

Source: A. Simon, Value Range Analysis of C Programs, 2009

Notice that adding the inequality $x \leq 7$ restricts the maximum value of x to 7 ! Is that OK? Why not?

$\underline{\text { Poly to Mult Propagation }}$

The two lines represent N_{1} and N_{2}, while the grey area represents N_{12}.

Source: A. Simon, Value Range Analysis of C Programs, 2009

Notice that adding the inequality $x \leq 7$ restricts the maximum value of x to 7 ! Is that OK? Why not? Because x is supposed to be a multiple of 4 .

Example: Reduction via Mult

We should be able to restrict $N_{12} \wedge_{N}\{x \leq 7\}$ by information from the Mult domain:

- from $M_{1} \in N_{1}$ we have $M_{1}(x)=2$
- a linear translation by 4 implies that its multiplicity remains the same in N_{2}
- from N_{2} it means it also remains the same in N_{12} due to the properties of V_{M}
- so the value of x after $x \leq 7$ is $x=4$

More generally we reduce the states to $N_{12} \wedge_{N}\{x \leq 4\}$.

Counter Example

Let us add two more instructions to our program:
L1: x = 4*y;
L2: if (rand())
L3: $\quad \mathrm{y}-\mathrm{-}$;
L4: $z=x+1$
L5: if ($z<=8$) \{\}

This adds to the analysis:

- L4 defines $N_{3}=N_{12} \triangleright z:=x+1$
- L5 defines $N_{4}=N_{3} \wedge_{N}\{z \leq 8\}$
- which should be equivalent to $x \leq 7$
- still we do not know anything about the multiplicity of z
- we assume $M(z)=0$!

We can not refine N_{4} without analyzing all the possible relationships of z with other variables in N_{3}.

Incorporating Mult \rightarrow Poly

Idea: scale each variable $x \in P$ by $1 / 2^{M(x)}$

- intersection: $(P, M) \wedge_{N}\{a x \leq c\}$
- scaled version: $P^{\prime}=P \wedge_{N} \llbracket\left\{\left(2^{M\left(x_{1}\right)} a_{1}, \ldots, 2^{M\left(x_{n}\right)} a_{n}\right) x \leq c\right\} \rrbracket$
- Num with different multiplicities M and M^{\prime} affect \subseteq_{N} and \vee_{N} operations
- $M(x)>M^{\prime}(x)$ leads to scaling by $2^{M(x)-M^{\prime}(x)}$

Example: $P_{3} \subseteq_{P} \llbracket\left\{2^{M_{3}(z)} z=2^{M_{3}(x)} x+1\right\} \rrbracket$ where $M_{3}(z)=0$ and $M_{3}(x)=2$.
Thus $\llbracket\left\{2^{M_{3}(z)} z=2^{M_{3}(x)} x+1\right\} \rrbracket=\llbracket\left\{2^{0} z=2^{2} x+1\right\} \rrbracket=\llbracket\{z=4 x+1\} \rrbracket$

$$
\Longrightarrow z \leq 8 \Longleftrightarrow 4 x+1 \leq 8 \Longleftrightarrow x \leq \frac{7}{4}=1 \frac{3}{4} \Longleftrightarrow x \leq 1 \Longrightarrow z \leq 5
$$

Remark: Introducing the multiplicity information to polyhedras reduces their coefficients (see coef. growth issue). In our example the reduction tightens $x \leq 1 \cdot 2^{M(x)}=4$ and $z \leq 5$.

Incorporating Poly \rightarrow Mult

We can also incorporate information from Poly to Mult.
Example: $P \subseteq_{P} \llbracket\{x=0\} \rrbracket$ then $M \in$ Mult is $M(x)=64$.
Remark: In fact scaling by $1 / 2^{M(x)}$ in Poly can only be done through information propagation from Mult.

Notations: Let $N(a x+c)=[I, u]_{\equiv d}$ be the set of values $\{I, I+d, \ldots, u\} \subseteq \mathbb{Z}$ that $a x+c$ can take in N.
Let $\llbracket N \rrbracket \subseteq \mathbb{Z}^{|\mathcal{X}|}$ be the set of all feasible points in $N \in$ Num.

Casting and Wrapping

Casting

Let us study the following code snippet:

```
while(*str) {
    dist[*str]++;
    str++;
};
```


Casting

Let us study the following code snippet:

```
while(*str) {
        dist[*str]++;
        str++;
    };
```

Which warning will we get?

Casting

Let us study the following code snippet:

```
while(*str) {
        dist[*str]++;
        str++;
    };
```

Which warning will we get? C standard asks for int iterators not char's.

Casting

Let us study the following code snippet:

```
while(*str) {
        dist[*str]++;
        str++;
};
```

Which warning will we get? C standard asks for int iterators not char's. We fix it with a cast:

```
while(*str) {
    dist[(int)*str]++;
    str++;
```

\};

Casting

Let us study the following code snippet:

```
while(*str) {
    dist[*str]++;
    str++;
};
```

Which warning will we get? C standard asks for int iterators not char's.
We fix it with a cast:

```
while(*str) {
    dist[(int)*str]++;
    str++;
};
```

Does this pass peer-review?

Casting

Let us study the following code snippet:

```
while(*str) {
    dist[*str]++;
    str++;
};
```

Which warning will we get? C standard asks for int iterators not char's.
We fix it with a cast:

```
while(*str) {
    dist[(int)*str]++;
    str++;
```

\};

Does this pass peer-review? No! Negative indices are possible.

Casting

Let us study the following code snippet:

```
while(*str) {
    dist[*str]++;
    str++;
};
```

Which warning will we get? C standard asks for int iterators not char's.
We fix it with a cast:

```
while(*str) {
    dist[(int)*str]++;
    str++;
```

\};

Does this pass peer-review? No! Negative indices are possible.
Fine, make it unsigned...

```
while(*str) {
    dist[(uint)*str]++;
    str++;
};
```


Casting: Warnings Fixed

```
while(*str) {
    dist[(uint)*str]++;
    str++;
};
```


Casting: Warnings Fixed

```
while(*str) {
    dist[(uint)*str]++;
    str++;
};
```

Happy?

Casting: Warnings Fixed

```
while(*str) {
    dist[(uint)*str]++;
    str++;
};
```

Happy?

You should not be: C standard dictates: char -> int -> uint!

Casting: Warnings Fixed

```
while(*str) {
    dist[(uint)*str]++;
    str++;
};
```

Happy?

You should not be: C standard dictates: char $->$ int $->$ uint! So what are the possible dist iterators?

Casting: Warnings Fixed

```
while(*str) {
    dist[(uint)*str]++;
    str++;
};
```

Happy?

You should not be: C standard dictates: char $->$ int $->$ uint!
So what are the possible dist iterators? $\left[2^{32}-128,2^{32}-1\right] \cup[0,127]$

Casting: Warnings Fixed

```
while(*str) {
    dist[(uint)*str]++;
    str++;
};
```

Happy?

You should not be: C standard dictates: char $->$ int $->$ uint!
So what are the possible dist iterators? $\left[2^{32}-128,2^{32}-1\right] \cup[0,127]$
Conclusion: we get positive indices but some are out-of-bounds! This is due to the wrapping of the negative indices.

Signed versus Unsigned

Source: A. Simon, Value Range Analysis of C Programs, 2009
Remarks

- subtracting from an integer is the same as adding the largest integer
- example: $(1,1,1,1)+(0,0,0,1)=(0,0,0,0)$
- negative range of signed wraps to upper range of unsigned
- miss-match against the possible infinite range of polyhedral variables

Useful notations

Before handling the out-of-bounds case in our model, let us settle notations.

- Let $\mathbb{B}=\{0,1\}$ be the Boolean set
- Let $b=\left(b_{w-1}, \ldots, b_{0}\right) \in \mathbb{B}^{w}$ be a vector of bits
- uint: $\operatorname{val}^{w, u i n t}(b)=\sum_{i=0}^{w-1} b_{i} 2^{i}$
- int: val ${ }^{w, \text { int }}(b)=\sum_{i=0}^{w-2} b_{i} 2^{i}-b_{w-1} 2^{w-1}$
- Let $\operatorname{bin}^{w}: \mathbb{Z} \rightarrow \mathbb{B}^{w}$ which converts an integer to the lower w bits
- $\operatorname{bin}^{w}(v)=b \Longleftrightarrow \exists b^{\prime} \in \mathbb{B}^{q}$ s.t.val ${ }^{q+w \text {, int }}\left(b^{\prime} \| b\right)=v$
- in the above $\|$ is the concatenation operator
- examples: $\operatorname{bin}^{3}(15)=(1,1,1) \quad$ val $^{5, \text { int }}((0,1,1,1,1))=15$
- denote $+{ }^{w}$ and $*^{w}$ addition and multiplication with truncation at w bits
- sign agnostic: $(1,1,1,1)+{ }^{4}(0,0,0,1)=(0,0,0,0)$
- let $\mathcal{B}=\mathbb{B}^{8}$ the set of bytes and $\Sigma=\mathcal{B}^{2^{32}}$ all states of 4 GB processes
- a given memory state is then $\sigma \in \Sigma$
- a byte access is $\sigma^{s}:\left[0,2^{32}-1\right] \rightarrow \mathcal{B}^{s}$ with $s \in\{1,2,4,8\}$ \#bytes to read

Implicit Wrapping

Relationship between Poly variables and process memory state
Example: let x be a char and $P(x)=[-1,2]$.
Then we have $11111111_{2}, 00000000_{2}, 00000001_{2}, 00000010_{2}$ or $\operatorname{bin}^{8 s}(v)$ with $v \in[-1,2]$ represented by a sequence of s bytes.

Remark: we can define bits ${ }_{a}^{s}: \mathbb{Z} \rightarrow \mathcal{P}(\Sigma)$ for all stores of $8 s$ bits at address $a=\operatorname{addr}(x)$ corresponding to $v \in P(x)$.

$$
\left.\operatorname{bits}_{a}^{s}(v)=\left\{\left(r_{8 \cdot 2^{32}} \ldots r_{8(a+s)}\right)\left\|\operatorname{bin}^{8 s}(v)\right\|\left(r_{8 a-1} \ldots r_{0}\right)\right)\right\}
$$

This considers only the lower $8 s$ bits of v; bits ${ }_{a}^{1}(0)=\operatorname{bits}_{a}^{1}(256)$.
For values $\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{Z}^{n}$ we have variables $\left(x_{1}, \ldots, x_{n}\right)$ leading to stores $\bigcap_{i \in[1, n]}$ bits $_{a_{i}}^{s_{i}}\left(v_{i}\right)$ where a_{i} is the address of x_{i} and s_{i} is the store size in bytes.
The polyhedron P is then a set of stores γ_{a}^{s} : Poly $\rightarrow \mathcal{P}(\Sigma)$

$$
\gamma_{a}^{s}(P)=\bigcup_{v \in P \cap \mathbb{Z}^{n}}\left(\bigcap_{i \in[1, n]} \operatorname{bits}_{a_{i}}^{s_{i}}\left(v_{i}\right)\right)
$$

Implicit Wrapping: Set of Stores and Wraping

The polyhedron P is then a set of stores $\gamma_{a}^{s}:$ Poly $\rightarrow \mathcal{P}(\Sigma)$

$$
\gamma_{a}^{s}(P)=\bigcup_{v \in P \cap \mathbb{Z}^{n}}\left(\bigcap_{i \in[1, n]} \operatorname{bits}_{a_{i}}^{s_{i}}\left(v_{i}\right)\right)
$$

- γ_{a}^{s} maps the abstract result to the actual wrapped result in the concrete process
- it gets us implicit wrapping
- the operator models without explicit checks for wrapping (overflows)
- a guard such as $x \leq y$ can not be modeled through $P \wedge_{P} \llbracket x \leq y \rrbracket$
- we need explicit wrapping

Example: Explicit Wrapping

Let $P=\llbracket x+1024=8 y,-64 \leq x \leq 448 \rrbracket$ and the uint8 variables x and y.
Suppose P feeds into the guard $x \leq y$.
Let $(x, y)=(384,176) \in P$.
Given $\sigma \in \gamma_{a}^{s}(384,176)$ implicit wrapping dictates that:

$$
\operatorname{val}^{8, \text { uint }}\left(\sigma^{1}(\operatorname{addr}(x))\right)=128 \quad \operatorname{val}^{8, \text { uint }}\left(\sigma^{1}(\operatorname{addr}(y))\right)=176
$$

which implies that $x \leq y$ is true when x, y are uint8 in σ.

Example: Explicit Wrapping

Let $P=\llbracket x+1024=8 y,-64 \leq x \leq 448 \rrbracket$ and the uint8 variables x and y.
Suppose P feeds into the guard $x \leq y$.
Let $(x, y)=(384,176) \in P$.
Given $\sigma \in \gamma_{a}^{s}(384,176)$ implicit wrapping dictates that:

$$
\operatorname{val}^{8, \text { uint }}\left(\sigma^{1}(\operatorname{addr}(x))\right)=128 \quad \operatorname{val}^{8, \text { uint }}\left(\sigma^{1}(\operatorname{addr}(y))\right)=176
$$

which implies that $x \leq y$ is true when x, y are uint8 in σ.
But notice that $(384,176) \wedge_{P} \llbracket x \leq y \rrbracket=\emptyset!$

Example: Explicit Wrapping

Let $P=\llbracket x+1024=8 y,-64 \leq x \leq 448 \rrbracket$ and the uint8 variables x and y.
Suppose P feeds into the guard $x \leq y$.
Let $(x, y)=(384,176) \in P$.
Given $\sigma \in \gamma_{a}^{s}(384,176)$ implicit wrapping dictates that:

$$
\operatorname{val}^{8, \text { uint }}\left(\sigma^{1}(\operatorname{addr}(x))\right)=128 \quad \operatorname{val}^{8, \text { uint }}\left(\sigma^{1}(\operatorname{addr}(y))\right)=176
$$

which implies that $x \leq y$ is true when x, y are uint8 in σ.
But notice that $(384,176) \wedge_{P} \llbracket x \leq y \rrbracket=\emptyset!$
This shows that it is not correct to model the guard as $P \wedge_{P} \llbracket x \leq y \rrbracket$.

Explicit Wrapping

- x range overflows on the two neighbouring quadrants

Explicit Wrapping

- x range overflows on the two neighboring quadrants
- partition P
- $P_{-1}=P \wedge_{P} \llbracket-256 \leq x \leq-1 \rrbracket$
- $P_{0}=P \wedge_{P} \llbracket 0 \leq x \leq 255 \rrbracket$
- $P_{1}=P \wedge_{P} \llbracket 256 \leq x \leq 511 \rrbracket$
- translate by 256 units P_{-1} and P_{1} towards P_{0}
- gray region is $P^{\prime} \wedge_{P} \llbracket x \leq y \rrbracket$

$$
\left.P^{\prime}=\left(P_{0} \vee_{P}\left(P_{-1} \triangleright x:=x+256\right) \vee_{P}\left(P_{1} \triangleright x:=x-256\right)\right) \vee_{P} \llbracket x \leq y \rrbracket\right)
$$

Explicit Wrapping

$$
\left.P^{\prime}=\left(P_{0} \vee_{P}\left(P_{-1} \triangleright x:=x+256\right) \vee_{P}\left(P_{1} \triangleright x:=x-256\right)\right) \vee_{P} \llbracket x \leq y \rrbracket\right)
$$

Or more precise $P^{\prime \prime}$:

$$
\left(P_{0} \wedge_{P} \llbracket x \leq y \rrbracket\right) \vee_{P}\left(\left(P_{-1} \triangleright x:=x+256\right) \wedge_{P} \llbracket x \leq y \rrbracket\right) \vee_{P}\left(\left(P_{1} \triangleright x:=x-256\right) \wedge_{P} \llbracket x \leq y \rrbracket\right)
$$

Infinite Wrapping

Source: A. Simon, Value Range Analysis of C Programs, 2009

- depicts $P=\llbracket x+1024=8 y \rrbracket$
- in general we do not have only 3 quadrants
- wrapping can require infinite join of state spaces
- $P_{i}=\left(P \triangleright x:=x+i \cdot 2^{8} \wedge_{P} \llbracket 0 \leq x \leq 255 \rrbracket\right) \vee_{P}\left(P \triangleright x:=x-i \cdot 2^{8} \wedge_{P} \llbracket 0 \leq x \leq 255 \rrbracket\right)$
- right figure is equivalent to full type range: $\exists_{x}(P) \wedge_{p} \llbracket 0 \leq x \leq 255 \rrbracket$

Precise Wrapping of Two Variables

Source: A. Simon, Value Range Analysis of C Programs, 2009

Wrapping Algorithm

```
Algorithm 1 Explicitly wrapping an expression to the range of a type.
procedure \(\operatorname{wrap}(P, t s, x)\) where \(P \neq \emptyset, t \in\{\) uint,int \(\}\) and \(s \in\{1,2,4,8\}\)
    1: \(b_{l} \leftarrow 0\)
    2: \(b_{h} \leftarrow 2^{s}\)
    3: if \(t=\) int then \(/^{*}\) Adjust ranges when wrapping to a signed type. */
    4: \(\quad b_{l} \leftarrow b_{l}-2^{s-1}\)
    5: \(\quad b_{h} \leftarrow b_{h}-2^{s-1}\)
    : end if
    \(:[l, u] \leftarrow P(x)\)
    : if \(l \neq-\infty \wedge u \neq \infty\) then /* Calculate quadrant indices. */
    9: \(\quad q_{l} \leftarrow\left\lfloor\left(l-b_{l}\right) / 2^{s}\right\rfloor\)
10: \(\quad q_{u} \leftarrow\left\lfloor\left(u-b_{l}\right) / 2^{s}\right\rfloor\)
11: end if
12: if \(l=-\infty \vee u=\infty \vee\left(q_{u}-q_{l}\right)>k\) then /* Set to full range. */
13: return \(\exists_{x}(P) \sqcap_{P} \llbracket b_{l} \leq x<b_{h} \rrbracket\)
14: else /* Shift and join quadrants \(\left\{q_{l}, \ldots q_{u}\right\}\). */
15: return \(\bigsqcup_{q \in\left[q_{l}, q_{u}\right]}\left(\left(P \triangleright x:=x-q 2^{s}\right) \sqcap_{P} \llbracket b_{l} \leq x<b_{h} \rrbracket\right)\)
16: end if
```

